1
|
Kiosia A, Dagbasi A, Berkley JA, Wilding JPH, Prendergast AJ, Li JV, Swann J, Mathers JC, Kerac M, Morrison D, Drake L, Briend A, Maitland K, Frost G. The double burden of malnutrition in individuals: Identifying key challenges and re-thinking research focus. NUTR BULL 2024; 49:132-145. [PMID: 38576109 DOI: 10.1111/nbu.12670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
The 'double burden of malnutrition' is a global health challenge that increasingly affects populations in both low- and middle-income countries (LMICs). This phenomenon refers to the coexistence of undernutrition and overweight or obesity, as well as other diet-related non-communicable diseases, in the same population, household or even individual. While noteworthy progress has been made in reducing undernutrition in some parts of the world, in many of these areas, the prevalence of overweight and obesity is increasing, particularly in urban areas, resulting in greater numbers of people who were undernourished in childhood and have overweight or obesity in adulthood. This creates a complex and challenging situation for research experts and policymakers who must simultaneously address the public health burdens of undernutrition and overweight/obesity. This review identifies key challenges and limitations in the current research on the double burden of malnutrition in individuals, including the need for a more comprehensive and nuanced understanding of the drivers of malnutrition, the importance of context-specific interventions and the need for greater attention to the food environment and food systems. We advocate for the re-evaluation of research strategies and focus, with a greater emphasis on multidisciplinary and systems approaches and greater attention to the synergistic relationship between the biological, environmental, commercial and socio-economic determinants of malnutrition. Addressing these key challenges can enable us to better comprehend and tackle the multifaceted and dynamic issues of the double burden of malnutrition, particularly in individuals and work towards more effective and sustainable solutions.
Collapse
Affiliation(s)
- Agklinta Kiosia
- Section of Nutrition, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Health Data Research Global, HDR UK, London, UK
| | - Aygul Dagbasi
- Section of Nutrition, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - James A Berkley
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK
| | - John P H Wilding
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Clinical Sciences Centre, Aintree University Hospital, Liverpool, UK
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, UK
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Jia V Li
- Section of Nutrition, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jon Swann
- School of Human Development and Health, University of Southampton Faculty of Medicine, Southampton, UK
| | - John C Mathers
- Human Nutrition & Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, William Leech Building, Newcastle University, Newcastle upon Tyne, UK
| | - Marko Kerac
- Department of Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Douglas Morrison
- Scottish Universities Environmental Research Centre, East Kilbride, UK
| | - Lesley Drake
- Partnership for Child Development, School of Public Health, Imperial College London, London, UK
| | - Andre Briend
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Kathryn Maitland
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Surgery and Cancer, Institute of Global Health Innovation, Imperial College London, London, UK
| | - Gary Frost
- Section of Nutrition, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
2
|
Jones HJ, Bourke CD, Swann JR, Robertson RC. Malnourished Microbes: Host-Microbiome Interactions in Child Undernutrition. Annu Rev Nutr 2023; 43:327-353. [PMID: 37207356 DOI: 10.1146/annurev-nutr-061121-091234] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Childhood undernutrition is a major global health burden that is only partially resolved by nutritional interventions. Both chronic and acute forms of child undernutrition are characterized by derangements in multiple biological systems including metabolism, immunity, and endocrine systems. A growing body of evidence supports a role of the gut microbiome in mediating these pathways influencing early life growth. Observational studies report alterations in the gut microbiome of undernourished children, while preclinical studies suggest that this can trigger intestinal enteropathy, alter host metabolism, and disrupt immune-mediated resistance against enteropathogens, each of which contribute to poor early life growth. Here, we compile evidence from preclinical and clinical studies and describe the emerging pathophysiological pathways by which the early life gut microbiome influences host metabolism, immunity, intestinal function, endocrine regulation, and other pathways contributing to child undernutrition. We discuss emerging microbiome-directed therapies and consider future research directions to identify and target microbiome-sensitive pathways in child undernutrition.
Collapse
Affiliation(s)
- Helen J Jones
- Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom;
| | - Claire D Bourke
- Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom;
| | - Jonathan R Swann
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruairi C Robertson
- Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom;
- Microenvironment and Immunity Unit, INSERM U1224, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Mutasa K, Tome J, Rukobo S, Govha M, Mushayanembwa P, Matimba FS, Chiorera CK, Majo FD, Tavengwa NV, Mutasa B, Chasekwa B, Humphrey JH, Ntozini R, Prendergast AJ, Bourke CD. Stunting Status and Exposure to Infection and Inflammation in Early Life Shape Antibacterial Immune Cell Function Among Zimbabwean Children. Front Immunol 2022; 13:899296. [PMID: 35769481 PMCID: PMC9234645 DOI: 10.3389/fimmu.2022.899296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Children who are stunted (length-for-age Z-score<-2) are at greater risk of infectious morbidity and mortality. Previous studies suggest that stunted children have elevated inflammatory biomarkers, but no studies have characterised their capacity to respond to new infections (i.e., their immune function). We hypothesised that antibacterial immune function would differ between stunted and non-stunted children and relate to their health and environment during early life. Methods We enrolled a cross-sectional cohort of 113 HIV-negative children nested within a longitudinal cluster-randomised controlled trial of household-level infant and young child feeding (IYCF) and water, sanitation and hygiene (WASH) interventions in rural Zimbabwe (SHINE; Clinical trials registration: NCT01824940). Venous blood was collected at 18 months of age and cultured for 24 h without antigen or with bacterial antigens: heat-killed Salmonella typhimurium (HKST) or Escherichia coli lipopolysaccharide (LPS). TNFα, IL-6, IL-8, IL-12p70, hepcidin, soluble (s)CD163, myeloperoxidase (MPO) and IFNβ were quantified in culture supernatants by ELISA to determine antigen-specific immune function. The effect of stunting status and early-life exposures (anthropometry, inflammation at 18 months, maternal health during pregnancy, household WASH) on immune function was tested in logit and censored log-normal (tobit) regression models. Results Children who were stunted (n = 44) had higher proportions (86.4% vs. 65.2%; 88.6% vs. 73.4%) and concentrations of LPS-specific IL-6 (geometric mean difference (95% CI): 3.46 pg/mL (1.09, 10.80), p = 0.035) and IL-8 (3.52 pg/mL (1.20, 10.38), p = 0.022) than non-stunted children (n = 69). Bacterial antigen-specific pro-inflammatory cytokine concentrations were associated with biomarkers of child enteropathy at 18 months and biomarkers of systemic inflammation and enteropathy in their mothers during pregnancy. Children exposed to the WASH intervention (n = 33) produced higher LPS- (GMD (95% CI): 10.48 pg/mL (1.84, 60.31), p = 0.008) and HKST-specific MPO (5.10 pg/mL (1.77, 14.88), p = 0.003) than children in the no WASH group (n = 80). There was no difference in antigen-specific immune function between the IYCF (n = 55) and no IYCF groups (n = 58). Conclusions Antibacterial immune function among 18-month-old children in a low-income setting was shaped by their stunting status and prior exposure to maternal inflammation and household WASH. Heterogeneity in immune function due to adverse exposures in early life could plausibly contribute to infection susceptibility.
Collapse
Affiliation(s)
- Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Joice Tome
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Sandra Rukobo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Margaret Govha
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Farai S. Matimba
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Florence D. Majo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Naume V. Tavengwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Batsirai Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Bernard Chasekwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Jean H. Humphrey
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Andrew J. Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Centre for Genomics and Child Health, Queen Mary University of London, London, United Kingdom
| | - Claire D. Bourke
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Centre for Genomics and Child Health, Queen Mary University of London, London, United Kingdom
- *Correspondence: Claire D. Bourke,
| |
Collapse
|