1
|
Spitschan M. Selecting, implementing and evaluating control and placebo conditions in light therapy and light-based interventions. Ann Med 2024; 56:2298875. [PMID: 38329797 PMCID: PMC10854444 DOI: 10.1080/07853890.2023.2298875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/20/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction: Light profoundly influences human physiology, behaviour and cognition by affecting various functions through light-sensitive cells in the retina. Light therapy has proven effective in treating seasonal depression and other disorders. However, designing appropriate control conditions for light-based interventions remains a challenge.Materials and methods: This article presents a novel framework for selecting, implementing and evaluating control conditions in light studies, offering theoretical foundations and practical guidance. It reviews the fundamentals of photoreception and discusses control strategies such as dim light, darkness, different wavelengths, spectral composition and metameric conditions. Special cases like dynamic lighting, simulated dawn and dusk, complex interventions and studies involving blind or visually impaired patients are also considered.Results: The practical guide outlines steps for selection, implementation, evaluation and reporting, emphasizing the importance of α-opic calculations and physiological validation.Conclusion: In conclusion, constructing effective control conditions is crucial for demonstrating the efficacy of light interventions in various research scenarios.
Collapse
Affiliation(s)
- Manuel Spitschan
- Max Planck Institute for Biological Cybernetics, Translational Sensory & Circadian Neuroscience, Tübingen, Germany
- Technical University of Munich, TUM School of Medicine and Health, Chronobiology & Health, Munich, Germany
- Technical University of Munich, TUM Institute for Advanced Study (TUM-IAS), Garching, Germany
| |
Collapse
|
2
|
Biller AM, Balakrishnan P, Spitschan M. Behavioural determinants of physiologically-relevant light exposure. COMMUNICATIONS PSYCHOLOGY 2024; 2:114. [PMID: 39614105 DOI: 10.1038/s44271-024-00159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024]
Abstract
Light exposure triggers a range of physiological and behavioural responses that can improve and challenge health and well-being. Insights from laboratory studies have recently culminated in standards and guidelines for measuring and assessing healthy light exposure, and recommendations for healthy light levels. Implicit to laboratory paradigms is a simplistic input-output relationship between light and its effects on physiology. This simplified approach ignores that humans actively shape their light exposure through behaviour. This article presents a novel framework that conceptualises light exposure as an individual behaviour to meet specific, person-based needs. Key to healthy light exposure is shaping behaviour, beyond shaping technology.
Collapse
Affiliation(s)
- Anna M Biller
- Department Health and Sport Sciences, Chronobiology & Health, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | - Priji Balakrishnan
- Laboratory of Architecture and Intelligent Living (AIL), Karlsruhe Institute of Technology, Karlsruhe, Germany
- Chair of Lighting Technology, Technische Universität Berlin, Berlin, Germany
| | - Manuel Spitschan
- Department Health and Sport Sciences, Chronobiology & Health, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
| |
Collapse
|
3
|
Schöllhorn I, Stefani O, Lucas RJ, Spitschan M, Epple C, Cajochen C. The Impact of Pupil Constriction on the Relationship Between Melanopic EDI and Melatonin Suppression in Young Adult Males. J Biol Rhythms 2024; 39:282-294. [PMID: 38348477 PMCID: PMC11141089 DOI: 10.1177/07487304241226466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The pupil modulates the amount of light that reaches the retina. Not only luminance but also the spectral distribution defines the pupil size. Previous research has identified steady-state pupil size and melatonin attenuation to be predominantly driven by melanopsin, which is expressed by a unique subgroup of intrinsically photosensitive retinal ganglion cells (ipRGCs) that are sensitive to short-wavelength light (~480 nm). Here, we aimed to selectively target the melanopsin system during the evening, while measuring steady-state pupil size and melatonin concentrations under commonly experienced evening light levels (<90 lx). Therefore, we used a five-primary display prototype to generate light conditions that were matched in terms of L-, M-, and S-cone-opic irradiances, but with high and low melanopic irradiances (~3-fold difference). Seventy-two healthy, male participants completed a 2-week study protocol. The volunteers were assigned to one of the four groups that differed in luminance levels (27-285 cd/m2). Within the four groups, each volunteer was exposed to a low melanopic (LM) and a high melanopic (HM) condition. The two 17-h study protocols comprised 3.5 h of light exposure starting 4 h before habitual bedtime. Median pupil size was significantly smaller during HM than LM in all four light intensity groups. In addition, we observed a significant correlation between melanopic weighted corneal illuminance (melanopic equivalent daylight illuminance [mEDI]) and pupil size, such that higher mEDI values were associated with smaller pupil size. Using pupil size to estimate retinal irradiance showed a qualitatively similar goodness of fit as mEDI for predicting melatonin suppression. Based on our results here, it remains appropriate to use melanopic irradiance measured at eye level when comparing light-dependent effects on evening melatonin concentrations in healthy young people at rather low light levels.
Collapse
Affiliation(s)
- Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital, University of Basel, Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital, University of Basel, Basel, Switzerland
- Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Robert J Lucas
- Centre for Biological Timing, School of Biology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Manuel Spitschan
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Chronobiology & Health, Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Munich, Germany
| | - Christian Epple
- Centre for Chronobiology, Psychiatric Hospital, University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital, University of Basel, Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Blume C, Cajochen C, Schöllhorn I, Slawik HC, Spitschan M. Effects of calibrated blue-yellow changes in light on the human circadian clock. Nat Hum Behav 2024; 8:590-605. [PMID: 38135734 PMCID: PMC10963261 DOI: 10.1038/s41562-023-01791-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/16/2023] [Indexed: 12/24/2023]
Abstract
Evening exposure to short-wavelength light can affect the circadian clock, sleep and alertness. Intrinsically photosensitive retinal ganglion cells expressing melanopsin are thought to be the primary drivers of these effects. Whether colour-sensitive cones also contribute is unclear. Here, using calibrated silent-substitution changes in light colour along the blue-yellow axis, we investigated whether mechanisms of colour vision affect the human circadian system and sleep. In a 32.5-h repeated within-subjects protocol, 16 healthy participants were exposed to three different light scenarios for 1 h starting 30 min after habitual bedtime: baseline control condition (93.5 photopic lux), intermittently flickering (1 Hz, 30 s on-off) yellow-bright light (123.5 photopic lux) and intermittently flickering blue-dim light (67.0 photopic lux), all calibrated to have equal melanopsin excitation. We did not find conclusive evidence for differences between the three lighting conditions regarding circadian melatonin phase delays, melatonin suppression, subjective sleepiness, psychomotor vigilance or sleep.The Stage 1 protocol for this Registered Report was accepted in principle on 9 September 2020. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.13050215.v1 .
Collapse
Affiliation(s)
- Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Helen C Slawik
- Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Manuel Spitschan
- Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
- TUM Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany.
| |
Collapse
|
5
|
Spitschan M, Vidafar P, Cain SW, Phillips AJK, Lambert BC. Power Analysis for Human Melatonin Suppression Experiments. Clocks Sleep 2024; 6:114-128. [PMID: 38534797 DOI: 10.3390/clockssleep6010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 03/28/2024] Open
Abstract
In humans, the nocturnal secretion of melatonin by the pineal gland is suppressed by ocular exposure to light. In the laboratory, melatonin suppression is a biomarker for this neuroendocrine pathway. Recent work has found that individuals differ substantially in their melatonin-suppressive response to light, with the most sensitive individuals being up to 60 times more sensitive than the least sensitive individuals. Planning experiments with melatonin suppression as an outcome needs to incorporate these individual differences, particularly in common resource-limited scenarios where running within-subjects studies at multiple light levels is costly and resource-intensive and may not be feasible with respect to participant compliance. Here, we present a novel framework for virtual laboratory melatonin suppression experiments, incorporating a Bayesian statistical model. We provide a Shiny web app for power analyses that allows users to modify various experimental parameters (sample size, individual-level heterogeneity, statistical significance threshold, light levels), and simulate a systematic shift in sensitivity (e.g., due to a pharmacological or other intervention). Our framework helps experimenters to design compelling and robust studies, offering novel insights into the underlying biological variability in melatonin suppression relevant for practical applications.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, 80992 Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, 85748 Garching, Germany
- Max Planck Research Group Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Parisa Vidafar
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Sean W Cain
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Andrew J K Phillips
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Ben C Lambert
- Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
| |
Collapse
|
6
|
Zeng X, Soreze TSC, Ballegaard M, Petersen PM. Integrative Lighting Aimed at Patients with Psychiatric and Neurological Disorders. Clocks Sleep 2023; 5:806-830. [PMID: 38131751 PMCID: PMC10742818 DOI: 10.3390/clockssleep5040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The purpose of this paper is to investigate the impact of circadian lighting-induced melatonin suppression on patients with psychiatric and neurological disorders in hospital wards by using an ad-hoc metrology framework and the subsequent metrics formalized by the CIE in 2018. A measurement scheme was conducted in hospital ward rooms in the Department of Neurology, Zealand University Hospital, at Roskilde in Denmark, to evaluate the photometric and colorimetric characteristics of the lighting system, as well as its influence on the circadian rhythm of the occupants. The measurement scheme included point measurements and data logging, using a spectrophotometer mounted on a tripod with adjustable height to assess the newly installed circadian lighting system. The measured spectra were uploaded to the Luox platform to calculate illuminance, CCT, MEDI, etc., in accordance with the CIE S026 standard. Furthermore, the MLIT based on MEDI data logging results was calculated. In addition to CIE S026, we have investigated the usefulness of melatonin suppression models for the assessment of circadian performance regarding measured light. From the results, the lighting conditions in the patient room for both minimal and abundant daylight access were evaluated and compared; we found that access to daylight is essential for both illumination and circadian entrainment. It can be concluded that the measurement scheme, together with the use of the Luox platform and Canva template, is suitable for the accurate and satisfactory measurement of integrative lighting that aligns with CIE requirements and recommendations.
Collapse
Affiliation(s)
- Xinxi Zeng
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (X.Z.); (P.M.P.)
| | - Thierry Silvio Claude Soreze
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (X.Z.); (P.M.P.)
| | - Martin Ballegaard
- Department of Neurology, Copenhagen University Hospital—Zealand University Hospital Roskilde, 4000 Roskilde, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Paul Michael Petersen
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (X.Z.); (P.M.P.)
| |
Collapse
|
7
|
Schöllhorn I, Stefani O, Blume C, Cajochen C. Seasonal Variation in the Responsiveness of the Melanopsin System to Evening Light: Why We Should Report Season When Collecting Data in Human Sleep and Circadian Studies. Clocks Sleep 2023; 5:651-666. [PMID: 37987395 PMCID: PMC10660855 DOI: 10.3390/clockssleep5040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023] Open
Abstract
It is well known that variations in light exposure during the day affect light sensitivity in the evening. More daylight reduces sensitivity, and less daylight increases it. On average days, we spend less time outdoors in winter and receive far less light than in summer. Therefore, it could be relevant when collecting research data on the non-image forming (NIF) effects of light on circadian rhythms and sleep. In fact, studies conducted only in winter may result in more pronounced NIF effects than in summer. Here, we systematically collected information on the extent to which studies on the NIF effects of evening light include information on season and/or light history. We found that more studies were conducted in winter than in summer and that reporting when a study was conducted or measuring individual light history is not currently a standard in sleep and circadian research. In addition, we sought to evaluate seasonal variations in a previously published dataset of 72 participants investigating circadian and sleep effects of evening light exposure in a laboratory protocol where daytime light history was not controlled. In this study, we selectively modulated melanopic irradiance at four different light levels (<90 lx). Here, we aimed to retrospectively evaluate seasonal variations in the responsiveness of the melanopsin system by combining all data sets in an exploratory manner. Our analyses suggest that light sensitivity is indeed reduced in summer compared to winter. Thus, to increase the reproducibility of NIF effects on sleep and circadian measures, we recommend an assessment of the light history and encourage standardization of reporting guidelines on the seasonal distribution of measurements.
Collapse
Affiliation(s)
- Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
- Lucerne University of Applied Sciences and Arts, Engineering and Architecture, Technikumstrasse 21, 6048 Horw, Switzerland
| | - Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
8
|
Spitschan M. [(Intrinsically photosensitive retinal ganglion cells. The physiological non-visual effects of light)]. ZEITSCHRIFT FUR PRAKTISCHE AUGENHEILKUNDE & AUGENARZTLICHE FORTBILDUNG : ZPA 2021; 42:431-435. [PMID: 39669977 PMCID: PMC7617228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In addition to enabling us to see, light fundamentally impacts on our physiology and behaviour through the non-visual pathways in the brain that control our circadian clock. These effects are largely mediated by the intrisically photosensitive retinal ganglion cells (ipRGCs) which express the short-wavelength-sensitive photopigment melanopsin. The non-visual effects of light and the underlying sensory and central mechanisms are an active and open area of investigation.
Collapse
|