1
|
Jeang B, Zhong D, Lee MC, Atieli H, Yewhalaw D, Yan G. Molecular surveillance of Kelch 13 polymorphisms in Plasmodium falciparum isolates from Kenya and Ethiopia. Malar J 2024; 23:36. [PMID: 38287365 PMCID: PMC10823687 DOI: 10.1186/s12936-023-04812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Timely molecular surveillance of Plasmodium falciparum kelch 13 (k13) gene mutations is essential for monitoring the emergence and stemming the spread of artemisinin resistance. Widespread artemisinin resistance, as observed in Southeast Asia, would reverse significant gains that have been made against the malaria burden in Africa. The purpose of this study was to assess the prevalence of k13 polymorphisms in western Kenya and Ethiopia at sites representing varying transmission intensities between 2018 and 2022. METHODS Dried blood spot samples collected through ongoing passive surveillance and malaria epidemiological studies, respectively, were investigated. The k13 gene was genotyped in P. falciparum isolates with high parasitaemia: 775 isolates from four sites in western Kenya (Homa Bay, Kakamega, Kisii, and Kombewa) and 319 isolates from five sites across Ethiopia (Arjo, Awash, Gambella, Dire Dawa, and Semera). DNA sequence variation and neutrality were analysed within each study site where mutant alleles were detected. RESULTS Sixteen Kelch13 haplotypes were detected in this study. Prevalence of nonsynonymous k13 mutations was low in both western Kenya (25/783, 3.19%) and Ethiopia (5/319, 1.57%) across the study period. Two WHO-validated mutations were detected: A675V in three isolates from Kenya and R622I in four isolates from Ethiopia. Seventeen samples from Kenya carried synonymous mutations (2.17%). No synonymous mutations were detected in Ethiopia. Genetic variation analyses and tests of neutrality further suggest an excess of low frequency polymorphisms in each study site. Fu and Li's F test statistic in Semera was 0.48 (P > 0.05), suggesting potential population selection of R622I, which appeared at a relatively high frequency (3/22, 13.04%). CONCLUSIONS This study presents an updated report on the low frequency of k13 mutations in western Kenya and Ethiopia. The WHO-validated R622I mutation, which has previously only been reported along the north-west border of Ethiopia, appeared in four isolates collected from eastern Ethiopia. The rapid expansion of R622I across Ethiopia signals the need for enhanced monitoring of the spread of drug-resistant P. falciparum parasites in East Africa. Although ACT remains currently efficacious in the study areas, continued surveillance is necessary to detect early indicators of artemisinin partial resistance.
Collapse
Affiliation(s)
- Brook Jeang
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Daibin Zhong
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Ming-Chieh Lee
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Harrysone Atieli
- School of Public Health and Community Development, Maseno University, Kisumu, Kenya
- International Center of Excellence for Malaria Research, Tom Mboya University College, Homa Bay, Kenya
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Girgis ST, Adika E, Nenyewodey FE, Senoo Jnr DK, Ngoi JM, Bandoh K, Lorenz O, van de Steeg G, Harrott AJR, Nsoh S, Judge K, Pearson RD, Almagro-Garcia J, Saiid S, Atampah S, Amoako EK, Morang'a CM, Asoala V, Adjei ES, Burden W, Roberts-Sengier W, Drury E, Pierce ML, Gonçalves S, Awandare GA, Kwiatkowski DP, Amenga-Etego LN, Hamilton WL. Drug resistance and vaccine target surveillance of Plasmodium falciparum using nanopore sequencing in Ghana. Nat Microbiol 2023; 8:2365-2377. [PMID: 37996707 PMCID: PMC10686832 DOI: 10.1038/s41564-023-01516-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/06/2023] [Indexed: 11/25/2023]
Abstract
Malaria results in over 600,000 deaths annually, with the highest burden of deaths in young children living in sub-Saharan Africa. Molecular surveillance can provide important information for malaria control policies, including detection of antimalarial drug resistance. However, genome sequencing capacity in malaria-endemic countries is limited. We designed and implemented an end-to-end workflow to detect Plasmodium falciparum antimalarial resistance markers and diversity in the vaccine target circumsporozoite protein (csp) using nanopore sequencing in Ghana. We analysed 196 clinical samples and showed that our method is rapid, robust, accurate and straightforward to implement. Importantly, our method could be applied to dried blood spot samples, which are readily collected in endemic settings. We report that P. falciparum parasites in Ghana are mostly susceptible to chloroquine, with persistent sulfadoxine-pyrimethamine resistance and no evidence of artemisinin resistance. Multiple single nucleotide polymorphisms were identified in csp, but their significance is uncertain. Our study demonstrates the feasibility of nanopore sequencing for malaria genomic surveillance in endemic countries.
Collapse
Affiliation(s)
- Sophia T Girgis
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Edem Adika
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Felix E Nenyewodey
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Dodzi K Senoo Jnr
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Joyce M Ngoi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Kukua Bandoh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Oliver Lorenz
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Guus van de Steeg
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Sebastian Nsoh
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Kim Judge
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Richard D Pearson
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Samirah Saiid
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Solomon Atampah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Enock K Amoako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Collins M Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Victor Asoala
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Elrmion S Adjei
- Ledzokuku Krowor Municipal Assembly (LEKMA) Hospital, Accra, Ghana
| | - William Burden
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Eleanor Drury
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Megan L Pierce
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Sónia Gonçalves
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | | | - Lucas N Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.
| | - William L Hamilton
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
3
|
Tadele G, Jawara A, Oboh M, Oriero E, Dugassa S, Amambua-Ngwa A, Golassa L. Clinical isolates of uncomplicated falciparum malaria from high and low malaria transmission areas show distinct pfcrt and pfmdr1 polymorphisms in western Ethiopia. Malar J 2023; 22:171. [PMID: 37270589 DOI: 10.1186/s12936-023-04602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/20/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Pfcrt gene has been associated with chloroquine resistance and the pfmdr1 gene can alter malaria parasite susceptibility to lumefantrine, mefloquine, and chloroquine. In the absence of chloroquine (CQ) and extensive use of artemether-lumefantrine (AL) from 2004 to 2020 to treat uncomplicated falciparum malaria, pfcrt haplotype, and pfmdr1 single nucleotide polymorphisms (SNPs) were determined in two sites of West Ethiopia with a gradient of malaria transmission. METHODS 230 microscopically confirmed P. falciparum isolates were collected from Assosa (high transmission area) and Gida Ayana (low transmission area) sites, of which 225 of them tested positive by PCR. High-Resolution Melting Assay (HRM) was used to determine the prevalence of pfcrt haplotypes and pfmdr1 SNPs. Furthermore, the pfmdr1 gene copy number (CNV) was determined using real-time PCR. A P-value of less or equal to 0.05 was considered significant. RESULTS Of the 225 samples, 95.5%, 94.4%, 86.7%, 91.1%, and 94.2% were successfully genotyped with HRM for pfcrt haplotype, pfmdr1-86, pfmdr1-184, pfmdr1-1042 and pfmdr1-1246, respectively. The mutant pfcrt haplotypes were detected among 33.5% (52/155) and 80% (48/60) of isolates collected from the Assosa and Gida Ayana sites, respectively. Plasmodium falciparum with chloroquine-resistant haplotypes was more prevalent in the Gida Ayana area compared with the Assosa area (COR = 8.4, P = 0.00). Pfmdr1-N86Y wild type and 184F mutations were found in 79.8% (166/208) and 73.4% (146/199) samples, respectively. No single mutation was observed at the pfmdr1-1042 locus; however, 89.6% (190/212) of parasites in West Ethiopia carry the wild-type D1246Y variants. Eight pfmdr1 haplotypes at codons N86Y-Y184F-D1246Y were identified with the dominant NFD 61% (122/200). There was no difference in the distribution of pfmdr1 SNPs, haplotypes, and CNV between the two study sites (P > 0.05). CONCLUSION Plasmodium falciparum with the pfcrt wild-type haplotype was prevalent in high malaria transmission site than in low transmission area. The NFD haplotype was the predominant haplotype of the N86Y-Y184F-D1246Y. A continuous investigation is needed to closely monitor the changes in the pfmdr1 SNPs, which are associated with the selection of parasite populations by ACT.
Collapse
Affiliation(s)
- Geletta Tadele
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aminata Jawara
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Mary Oboh
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Eniyou Oriero
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
4
|
Gachie B, Thiong'o K, Muriithi B, Chepngetich J, Onchieku N, Gathirwa J, Mwitari P, Magoma G, Kiboi D, Kimani F. Prevalence of mutations in the cysteine desulfurase IscS (Pfnfs1) gene in recurrent Plasmodium falciparum infections following artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) treatment in Matayos, Western Kenya. Malar J 2023; 22:158. [PMID: 37202779 DOI: 10.1186/s12936-023-04587-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Malaria remains a public health concern globally. Resistance to anti-malarial drugs has consistently threatened the gains in controlling the malaria parasites. Currently, artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) are the treatment regimens against Plasmodium falciparum infections in many African countries, including Kenya. Recurrent infections have been reported in patients treated with AL or DP, suggesting the possibility of reinfection or parasite recrudescence associated with the development of resistance against the two therapies. The Plasmodium falciparum cysteine desulfurase IscS (Pfnfs1) K65 selection marker has previously been associated with decreased lumefantrine susceptibility. This study evaluated the frequency of the Pfnfs1 K65 resistance marker and associated K65Q resistant allele in recurrent infections collected from P. falciparum-infected individuals living in Matayos, Busia County, in western Kenya. METHODS Archived dried blood spots (DBS) of patients with recurrent malaria infection on clinical follow-up days after treatment with either AL or DP were used in the study. After extraction of genomic DNA, PCR amplification and sequencing analysis were employed to determine the frequencies of the Pfnfs1 K65 resistance marker and K65Q mutant allele in the recurrent infections. Plasmodium falciparum msp1 and P. falciparum msp2 genetic markers were used to distinguish recrudescent infections from new infections. RESULTS The K65 wild-type allele was detected at a frequency of 41% while the K65Q mutant allele was detected at a frequency of 22% in the recurrent samples. 58% of the samples containing the K65 wild-type allele were AL treated samples and while 42% were DP treated samples. 79% of the samples with the K65Q mutation were AL treated samples and 21% were DP treated samples. The K65 wild-type allele was detected in three recrudescent infections (100%) identified from the AL treated samples. The K65 wild-type allele was detected in two recrudescent DP treated samples (67%) while the K65Q mutant allele was identified in one DP treated (33%) recrudescent sample. CONCLUSIONS The data demonstrate a higher frequency of the K65 resistance marker in patients with recurrent infection during the study period. The study underscores the need for consistent monitoring of molecular markers of resistance in regions of high malaria transmission.
Collapse
Affiliation(s)
- Beatrice Gachie
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya.
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya.
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya.
| | - Kelvin Thiong'o
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Brenda Muriithi
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Jean Chepngetich
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Noah Onchieku
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Jeremiah Gathirwa
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Peter Mwitari
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Gabriel Magoma
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000 -00200, Nairobi, Kenya
| | - Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000 -00200, Nairobi, Kenya
| | - Francis Kimani
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
5
|
Kamau A, Musau M, Mwakio S, Amadi D, Nyaguara A, Bejon P, Seale AC, Berkley JA, Snow RW. Impact of Intermittent Presumptive Treatment for Malaria in Pregnancy on Hospital Birth Outcomes on the Kenyan Coast. Clin Infect Dis 2022; 76:e875-e883. [PMID: 35731850 PMCID: PMC9907553 DOI: 10.1093/cid/ciac509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Intermittent preventive treatment (IPTp) for pregnant women with sulfadoxine-pyrimethamine (SP) is widely implemented for the prevention of malaria in pregnancy and adverse birth outcomes. The efficacy of SP is declining, and there are concerns that IPTp may have reduced impact in areas of high resistance. We sought to determine the protection afforded by SP as part of IPTp against adverse birth outcomes in an area with high levels of SP resistance on the Kenyan coast. METHODS A secondary analysis of surveillance data on deliveries at the Kilifi County Hospital between 2015 and 2021 was undertaken in an area of low malaria transmission and high parasite mutations associated with SP resistance. A multivariable logistic regression model was developed to estimate the effect of SP doses on the risk of low birthweight (LBW) deliveries and stillbirths. RESULTS Among 27 786 deliveries, 3 or more doses of IPTp-SP were associated with a 27% reduction in the risk of LBW (adjusted odds ratio [aOR], 0.73; 95% confidence interval [CI], .64-.83; P < .001) compared with no dose. A dose-response association was observed with increasing doses of SP from the second trimester linked to increasing protection against LBW deliveries. Three or more doses of IPTp-SP were also associated with a 21% reduction in stillbirth deliveries (aOR, 0.79; 95% CI, .65-.97; P = .044) compared with women who did not take any dose of IPTp-SP. CONCLUSIONS The continued significant association of SP on LBW deliveries suggests that the intervention may have a non-malaria impact on pregnancy outcomes.
Collapse
Affiliation(s)
- Alice Kamau
- Correspondence: A. Kamau, KEMRI/Wellcome Trust Research Programme, PO Box 43640-00100, Nairobi, Kenya ()
| | - Moses Musau
- Public Health Research, Kenya Medical Research Institute–Wellcome Trust Research Programme, Nairobi, Kenya
| | - Stella Mwakio
- Epidemiology and Demography, Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - David Amadi
- Epidemiology and Demography, Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Amek Nyaguara
- Epidemiology and Demography, Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Philip Bejon
- Epidemiology and Demography, Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Anna C Seale
- Epidemiology and Demography, Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya,Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom,College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - James A Berkley
- Public Health Research, Kenya Medical Research Institute–Wellcome Trust Research Programme, Nairobi, Kenya,Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
6
|
Wamae K, Kimenyi KM, Osoti V, de Laurent ZR, Ndwiga L, Kharabora O, Hathaway NJ, Bailey JA, Juliano JJ, Bejon P, Ochola-Oyier LI. Amplicon sequencing as a potential surveillance tool for complexity of infection and drug resistance markers in Plasmodium falciparum asymptomatic infections. J Infect Dis 2022; 226:920-927. [PMID: 35429395 PMCID: PMC7613600 DOI: 10.1093/infdis/jiac144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background Genotyping Plasmodium falciparum subpopulations in malaria infections is an important aspect of malaria molecular epidemiology to understand within-host diversity and the frequency of drug resistance markers. Methods We characterized P. falciparum genetic diversity in asymptomatic infections and subsequent first febrile infections using amplicon sequencing (AmpSeq) of ama1 in Coastal Kenya. We also examined temporal changes in haplotype frequencies of mdr1, a drug-resistant marker. Results We found >60% of the infections were polyclonal (complexity of infection [COI] >1) and there was a reduction in COI over time. Asymptomatic infections had a significantly higher mean COI than febrile infections based on ama1 sequences (2.7 [95% confidence interval {CI}, 2.65–2.77] vs 2.22 [95% CI, 2.17–2.29], respectively). Moreover, an analysis of 30 paired asymptomatic and first febrile infections revealed that many first febrile infections (91%) were due to the presence of new ama1 haplotypes. The mdr1-YY haplotype, associated with chloroquine and amodiaquine resistance, decreased over time, while the NY (wild type) and the NF (modulates response to lumefantrine) haplotypes increased. Conclusions This study emphasizes the utility of AmpSeq in characterizing parasite diversity as it can determine relative proportions of clones and detect minority clones. The usefulness of AmpSeq in antimalarial drug resistance surveillance is also highlighted.
Collapse
Affiliation(s)
- Kevin Wamae
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kelvin M. Kimenyi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Victor Osoti
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - Oksana Kharabora
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicholas J. Hathaway
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Jonathan J. Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|