1
|
Worel N, Mišík M, Kundi M, Ferk F, Hutter HP, Nersesyan A, Wultsch G, Krupitza G, Knasmueller S. Impact of high (1950 MHz) and extremely low (50 Hz) frequency electromagnetic fields on DNA damage caused by occupationally relevant exposures in human derived cell lines. Toxicol In Vitro 2024; 100:105902. [PMID: 39025159 DOI: 10.1016/j.tiv.2024.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Epidemiological studies indicate that electromagnetic fields (EMF) are associated with cancer in humans. Exposure to mobile phone specific high frequency fields (HF-EMF) may lead to increased glioma risks, while low frequency radiation (LF-EMF) is associated with childhood leukemia. We studied the impact of HF-EMF (1950 MHz, UMTS signal) on DNA stability in an astrocytoma cell line (1321N1), and the effect of LF-EMF (50 Hz) in human derived lymphoma (Jurkat) cells. To find out if these fields affect chemically induced DNA damage, co-exposure experiments were performed. The cells were exposed to HF-EMF or LF-EMF and treated simultaneously and sequentially with mutagens. The compounds cause DNA damage via different molecular mechanisms, i.e. pyrimidine dimers which are characteristic for UV light (4-nitroquinoline 1-oxide, 4NQO), bulky base adducts (benzo[a]pyrene diolepoxide, BPDE), DNA-DNA and DNA-protein cross links and oxidative damage (NiCl2, CrO3). DNA damage was measured in single cell gel electrophoresis (comet) assays. We found a moderate reduction of basal and 4NQO-induced DNA damage in the astrocytoma line, but no significant alterations of chemically induced DNA migration by the HF and LF fields under all other experimental series. The biological consequences of the moderate reduction remain unclear, but our findings indicate that acute mobile phone and power line specific EMF exposures do not enhance genotoxic effects caused by occupationally relevant chemical exposures.
Collapse
Affiliation(s)
- Nadine Worel
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Miroslav Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Franziska Ferk
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Hans-Peter Hutter
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | | | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Siegfried Knasmueller
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria.
| |
Collapse
|
2
|
Gupta S, Sharma RS, Singh R. Non-ionizing radiation as possible carcinogen. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:916-940. [PMID: 32885667 DOI: 10.1080/09603123.2020.1806212] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
The advent of wireless technologies has revolutionized the way we communicate. The steady upsurge in the use of mobile phone all over the world in the last two decades, while triggered economic growth, has caused substantial damage to the environment, both directly and indirectly. The electromagnetic radiation generated from mobile phones, radio-based stations, and phone towers, high-voltage power lines have been reported which leads to the variety of health scares such as the risk of cancer in human beings and adverse effects in animals, birds, etc. Though the usage of such radiation emitting from mobile phones has risen steeply, there is a lack of proper knowledge about the associated risks. The review provides the latest research evidence based both on in vitro studies, in vivo studies, and possible gaps in our knowledge. Moreover, the present review also summarizes available literature in this subject, reports and studies which will help to form guidelines for its exposure limits to the public.Abbreviations: Continuous Wave: CW; Code Division Multiple Access: CDMA; Global System for Mobile Communications: GSM; Peripheral Blood Mononuclear Cell: PBMC; Radiofrequency: RF; Radiofrequency radiation: RFR; Universal Mobile Telecommunications System: UMTS; Wideband Code Division Multiple Access: WCDMA; Specific Absorption Rate: SAR; National Toxicology Program: NTP; amplitude-modulated or amplitude-modulation: AM; Electromagnetic frequencies: EMF; confidence interval: CI; Gigahertz: GHz; odds ratio: OR; incidence ratio: IR; reactive oxygen species: ROS; specific absorption rate: SAR; International Agency of Research on Cancer: IARC; single-strand breaks: SSB; double-strand breaks: DSB (7,12-Dimethylbenz[a]anthracene): DMBA; Hour: h; international commission on non-ionizing radiation protection: ICNIRP; extremely low frequency: ELFl; microtesla: mT; Gigahertz: GHz; hertz: Hz; decibel: dB; kilometer: Km; Watt per square meter: W/m2; Hour: h; positron emission tomography: PET.
Collapse
Affiliation(s)
- Shiwangi Gupta
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, India
| | - Radhey Shyam Sharma
- Department of RBMH & CH, Indian Council of Medical Research, New Delhi, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, India
| |
Collapse
|
3
|
Halgamuge MN, Skafidas E, Davis D. A meta-analysis of in vitro exposures to weak radiofrequency radiation exposure from mobile phones (1990-2015). ENVIRONMENTAL RESEARCH 2020; 184:109227. [PMID: 32199316 DOI: 10.1016/j.envres.2020.109227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
To function, mobile phone systems require transmitters that emit and receive radiofrequency signals over an extended geographical area exposing humans in all stages of development ranging from in-utero, early childhood, adolescents and adults. This study evaluates the question of the impact of radiofrequency radiation on living organisms in vitro studies. In this study, we abstract data from 300 peer-reviewed scientific publications (1990-2015) describing 1127 experimental observations in cell-based in vitro models. Our first analysis of these data found that out of 746 human cell experiments, 45.3% indicated cell changes, whereas 54.7% indicated no changes (p = 0.001). Realizing that there are profound distinctions between cell types in terms of age, rate of proliferation and apoptosis, and other characteristics and that RF signals can be characterized in terms of polarity, information content, frequency, Specific Absorption Rate (SAR) and power, we further refined our analysis to determine if there were some distinct properties of negative and positive findings associated with these specific characteristics. We further analyzed the data taking into account the cumulative effect (SAR × exposure time) to acquire the cumulative energy absorption of experiments due to radiofrequency exposure, which we believe, has not been fully considered previously. When the frequency of signals, length and type of exposure, and maturity, rate of growth (doubling time), apoptosis and other properties of individual cell types are considered, our results identify a number of potential non-thermal effects of radiofrequency fields that are restricted to a subset of specific faster-growing less differentiated cell types such as human spermatozoa (based on 19 reported experiments, p-value = 0.002) and human epithelial cells (based on 89 reported experiments, p-value < 0.0001). In contrast, for mature, differentiated adult cells of Glia (p = 0.001) and Glioblastoma (p < 0.0001) and adult human blood lymphocytes (p < 0.0001) there are no statistically significant differences for these more slowly reproducing cell lines. Thus, we show that RF induces significant changes in human cells (45.3%), and in faster-growing rat/mouse cell dataset (47.3%). In parallel with this finding, further analysis of faster-growing cells from other species (chicken, rabbit, pig, frog, snail) indicates that most undergo significant changes (74.4%) when exposed to RF. This study confirms observations from the REFLEX project, Belyaev and others that cellular response varies with signal properties. We concur that differentiation of cell type thus constitutes a critical piece of information and should be useful as a reference for many researchers planning additional studies. Sponsorship bias is also a factor that we did not take into account in this analysis.
Collapse
Affiliation(s)
- Malka N Halgamuge
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Efstratios Skafidas
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Devra Davis
- Environmental Health Trust, Teton Village, WY, 83025, USA
| |
Collapse
|
4
|
Crabtree DPE, Herrera BJ, Kang S. The response of human bacteria to static magnetic field and radiofrequency electromagnetic field. J Microbiol 2017; 55:809-815. [DOI: 10.1007/s12275-017-7208-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 12/27/2022]
|
5
|
Rougier C, Prorot A, Chazal P, Leveque P, Leprat P. Thermal and nonthermal effects of discontinuous microwave exposure (2.45 gigahertz) on the cell membrane of Escherichia coli. Appl Environ Microbiol 2014; 80:4832-41. [PMID: 24907330 PMCID: PMC4135774 DOI: 10.1128/aem.00789-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/23/2014] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate the effects on the cell membranes of Escherichia coli of 2.45-GHz microwave (MW) treatment under various conditions with an average temperature of the cell suspension maintained at 37°C in order to examine the possible thermal versus nonthermal effects of short-duration MW exposure. To this purpose, microwave irradiation of bacteria was performed under carefully defined and controlled parameters, resulting in a discontinuous MW exposure in order to maintain the average temperature of the bacterial cell suspensions at 37°C. Escherichia coli cells were exposed to 200- to 2,000-W discontinuous microwave (DW) treatments for different periods of time. For each experiment, conventional heating (CH) in a water bath at 37°C was performed as a control. The effects of DW exposure on cell membranes was investigated using flow cytometry (FCM), after propidium iodide (PI) staining of cells, in addition to the assessment of intracellular protein release in bacterial suspensions. No effect was detected when bacteria were exposed to conventional heating or 200 W, whereas cell membrane integrity was slightly altered when cell suspensions were subjected to powers ranging from 400 to 2,000 W. Thermal characterization suggested that the temperature reached by the microwave-exposed samples for the contact time studied was not high enough to explain the measured modifications of cell membrane integrity. Because the results indicated that the cell response is power dependent, the hypothesis of a specific electromagnetic threshold effect, probably related to the temperature increase, can be advanced.
Collapse
Affiliation(s)
- Carole Rougier
- Ecole Nationale Supérieure d'Ingénieurs de Limoges (ENSIL), University of Limoges, Limoges, France
| | - Audrey Prorot
- Groupement de Recherche Eau Sol et Environnement (GRESE), University of Limoges, Limoges, France
| | - Philippe Chazal
- Groupement de Recherche Eau Sol et Environnement (GRESE), University of Limoges, Limoges, France
| | | | - Patrick Leprat
- Groupement de Recherche Eau Sol et Environnement (GRESE), University of Limoges, Limoges, France
| |
Collapse
|
6
|
Ferreira E, Cronjé MJ. Selection of suitable reference genes for quantitative real-time PCR in apoptosis-induced MCF-7 breast cancer cells. Mol Biotechnol 2012; 50:121-8. [PMID: 21681549 DOI: 10.1007/s12033-011-9425-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Apoptosis is induced in MCF-7 breast cancer cells following treatment with salicylic acid (20 mM), either in the presence or absence of a heat shock (42°C for 30 min). In order to study the alterations of apoptotic genes with quantitative real-time PCR (qPCR), suitable genes with unchanged expression following the treatments is required for normalizing the gene expression levels. In this study, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-actin (ACTB), Histone H2A (HIST), constitutively expressed heat shock protein 70 (HSC70) and tyrosine 3-monooxygenase/trytophan 5 monooxygenase activation protein, 14-3-3 (YWHAZ) were evaluated as appropriate reference genes. Analysis of gene expression data with one-way ANOVA, geNorm and NormFinder identified HIST and YWHAZ as the least affected during the induction of apoptosis by the different treatments, and is the most suitable gene-pair for normalization during qPCR analysis in MCF-7 breast cancer cells undergoing apoptosis following treatment with SA and/or HS.
Collapse
Affiliation(s)
- Eloise Ferreira
- Department of Biochemistry, University of Johannesburg (APK Campus), Auckland Park 2006, South Africa
| | | |
Collapse
|
7
|
Verschaeve L, Juutilainen J, Lagroye I, Miyakoshi J, Saunders R, de Seze R, Tenforde T, van Rongen E, Veyret B, Xu Z. In vitro and in vivo genotoxicity of radiofrequency fields. Mutat Res 2010; 705:252-68. [PMID: 20955816 DOI: 10.1016/j.mrrev.2010.10.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/08/2010] [Accepted: 10/08/2010] [Indexed: 11/17/2022]
Abstract
There has been growing concern about the possibility of adverse health effects resulting from exposure to radiofrequency radiations (RFR), such as those emitted by wireless communication devices. Since the introduction of mobile phones many studies have been conducted regarding alleged health effects but there is still some uncertainty and no definitive conclusions have been reached so far. Although thermal effects are well understood they are not of great concern as they are unlikely to result from the typical low-level RFR exposures. Concern rests essentially with the possibility that RFR-exposure may induce non-thermal and/or long-term health effects such as an increased cancer risk. Consequently, possible genetic effects have often been studied but with mixed results. In this paper we review the data on alleged RFR-induced genetic effects from in vitro and in vivo investigations as well as from human cytogenetic biomonitoring surveys. Attention is also paid to combined exposures of RFR with chemical or physical agents. Again, however, no entirely consistent picture emerges. Many of the positive studies may well be due to thermal exposures, but a few studies suggest that biological effects can be seen at low levels of exposure. Overall, however, the evidence for low-level genotoxic effects is very weak.
Collapse
Affiliation(s)
- L Verschaeve
- O.D. Public Health & Surveillance, Laboratory of Toxicology, Scientific Institute of Public Health, Brussels, and Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Miyakoshi J. Cellular Biology Aspects of Mobile Phone Radiation. ADVANCES IN ELECTROMAGNETIC FIELDS IN LIVING SYSTEMS 2009. [DOI: 10.1007/978-0-387-92736-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|