1
|
Mahmoud A, Abuelazm M, Ahmed AAS, Abdalshafy H, Abdelazeem B, Brašić JR. Efficacy and Safety of Polaprezinc-Based Therapy versus the Standard Triple Therapy for Helicobacter pylori Eradication: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022; 14:4126. [PMID: 36235778 PMCID: PMC9573391 DOI: 10.3390/nu14194126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Helicobacter pylori (H. pylori) is the most prevalent etiology of gastritis worldwide. H. pylori management depends mainly on antibiotics, especially the triple therapy formed of clarithromycin, amoxicillin, and proton pump inhibitors. Lately, many antibiotic-resistant strains have emerged, leading to a decrease in the eradication rates of H. pylori. Polaprezinc (PZN), a mucosal protective zinc-L-carnosine complex, may be a non-antibiotic agent to treat H. pylori without the risk of resistance. We performed a systematic review and meta-analysis to evaluate the efficacy and safety of a PZN-based regimen for the eradication of H. pylori. This study used a systematic review and meta-analysis synthesizing randomized controlled trials (RCTs) from WOS, SCOPUS, EMBASE, PubMed, and Google Scholar until 25 July 2022. We used the odds ratio (OR) for dichotomous outcomes presented with the corresponding 95% confidence interval (CI). We registered our protocol in PROSPERO with ID: CRD42022349231. We included 3 trials with a total of 396 participants who were randomized to either PZN plus triple therapy (n = 199) or triple therapy alone (control) (n = 197). Pooled OR found a statistical difference favoring the PZN arm in the intention to treat and per protocol H. pylori eradication rates (OR: 2.01 with 95% CI [1.27, 3.21], p = 0.003) and (OR: 2.65 with 95% CI [1.55, 4.54], p = 0.0004), respectively. We found no statistical difference between the two groups regarding the total adverse events (OR: 1.06 with 95% CI [0.55, 2.06], p = 0.85). PZN, when added to the triple therapy, yielded a better effect concerning the eradication rates of H. pylori with no difference in adverse event rates, and thus can be considered a valuable adjuvant for the management of H. pylori. However, the evidence is still scarce, and larger trials are needed to confirm or refute our findings.
Collapse
Affiliation(s)
| | | | | | | | - Basel Abdelazeem
- Department of Internal Medicine, McLaren Health Care, Flint, MI 48532, USA
- Department of Internal Medicine, Michigan State University, East Lansing, MI 48823, USA
| | - James Robert Brašić
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Tang W, Liu H, Ooi TC, Rajab NF, Cao H, Sharif R. Zinc carnosine: Frontiers advances of supplement for cancer therapy. Biomed Pharmacother 2022; 151:113157. [PMID: 35605299 DOI: 10.1016/j.biopha.2022.113157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022] Open
Abstract
Zinc (Zn) has an existence within large quantities in the human brain, while accumulating within synaptic vesicle. There is growing evidence that Zn metabolic equilibrium breaking participates into different diseases (e.g., vascular dementia, carcinoma, Alzheimer's disease). Carnosine refers to an endogenic dipeptide abundant in skeletal muscle and brains and exerts a variety of positive influences (e.g., carcinoma resistance, crosslinking resistance, metal chelation and oxidation limitation). A complex of Zn and carnosine, called Zinc-L-carnosine (ZnC), has been extensively employed within Zn supplement therapeutic method and the treating approach for ulcers. ZnC has been shown to play a variety of roles in the body, including inhibiting intracellular reactive oxygen species(ROS) and free radical levels, inhibiting inflammation, supplementing zinc enzymes and promoting wound healing and mucosal cell repair. The present study conducting a reviewing process for the advances of ZnC in tumor adjuvant therapy.
Collapse
Affiliation(s)
- Weiwei Tang
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Hanyuan Liu
- General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Theng Choon Ooi
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Hongyong Cao
- General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Razinah Sharif
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; Biocompatibility Laboratory, Centre for Research and Instrumentation, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Matsuu-Matsuyama M, Shichijo K, Tsuchiya T, Kondo H, Miura S, Matsuda K, Sekine I, Nakashima M. Protective effects of a cystine and theanine mixture against acute radiation injury in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 78:103395. [PMID: 32325407 DOI: 10.1016/j.etap.2020.103395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
This study aims to examine the effects of cystine and theanine (CT), which increases glutathione biosynthesis, on the survival rate and acute radiation injury of the small intestine and bone marrow using a rat model. CT pre-treatment (280 mg/kg for 5 days) significantly improved weight loss and survival rate of rats as compared with the control group after 5 Gy. CT pre-treatment significantly increased the rate of mucosa and crypt length, and decreased the number of apoptotic cells, TUNEL and cleaved caspase-3 positive cells, while increasing the number of mitotic cells and Ki-67 positive cells in jejunal crypts and villi compared to control rats post-irradiation. CT also suppressed bone marrow cell loss and reduced the number of apoptotic cells in bone marrow. These results suggest a protective effect of CT pre-treatment for acute injury after irradiation through apoptosis inhibition and increased proliferative activity in jejunal crypt cells and bone marrow cells.
Collapse
Affiliation(s)
- Mutsumi Matsuu-Matsuyama
- Tissue and Histopathology Section, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Kazuko Shichijo
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Takashi Tsuchiya
- Sendai City Medical Center, 5-22-1 Tsurugaya, Miyagino, Miyagi 983-0824, Japan.
| | - Hisayoshi Kondo
- Biostatistics Section, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Shiro Miura
- Department of Pathology, National Hospital Organization Nagasaki Medical Center, 2-1001-1 Kubara, Omura, Nagasaki 856-8562, Japan.
| | - Katsuya Matsuda
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Ichiro Sekine
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Masahiro Nakashima
- Tissue and Histopathology Section, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
4
|
Doi H, Kuribayashi K, Kijima T. Utility of polaprezinc in reducing toxicities during radiotherapy: a literature review. Future Oncol 2018; 14:1977-1988. [PMID: 30074413 DOI: 10.2217/fon-2018-0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chemoradiotherapy is important for treating malignancies. However, radiation-induced toxicities develop as chemoradiotherapy-related complications. Various agents reduce or prevent toxicities, but there are no standard treatments. Polaprezinc (PZ), a chelating compound used for gastric ulcers, has antioxidant and free radical scavenging effects. Although few studies have evaluated PZ and radiation-induced normal tissue damage, several clinical studies have shown the efficacy of PZ for oral mucositis, esophagitis, proctitis and taste alterations during and after radiotherapy. Moreover, preclinical data support the clinical data, indicating good potential of testing PZ in future trials. However, as there are only few well-documented review articles on PZ use in cancer treatment, we conducted this literature review. PZ reduced several radiation-induced toxicities and improved the quality of life.
Collapse
Affiliation(s)
- Hiroshi Doi
- Department of Radiation Oncology, Meiwa Cancer Clinic, Nishinomiya, Hyogo, Japan
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Department of Radiation Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kozo Kuribayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Takashi Kijima
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
5
|
Hill TL, Lascelles BDX, Blikslager AT. Effect of sucralfate on gastric permeability in an ex vivo model of stress-related mucosal disease in dogs. J Vet Intern Med 2018; 32:670-678. [PMID: 29460464 PMCID: PMC5866966 DOI: 10.1111/jvim.15076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/19/2017] [Accepted: 01/22/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Sucralfate is a gastroprotectant with no known systemic effects. The efficacy of sucralfate for prevention and treatment of stress-related mucosal diseases (SRMD) in dogs is unknown. HYPOTHESIS/OBJECTIVES To develop a canine ex vivo model of SRMD and to determine the effect of sucralfate on mucosal barrier function in this model. ANIMALS Gastric antral mucosa was collected immediately postmortem from 29 random-source apparently healthy dogs euthanized at a local animal control facility. METHODS Randomized experimental trial. Sucralfate (100 mg/mL) was applied to ex vivo canine gastric mucosa concurrent with and after acid injury. Barrier function was assessed by measurement of transepithelial electrical resistance (TER) and radiolabeled mannitol flux. RESULTS Application of acidified Ringers solution to the mucosal side of gastric antrum caused a reduction in gastric barrier function, and washout of acidified Ringers solution allowed recovery of barrier function (TER: 34.0 ± 2.8% of control at maximum injury, 71.3 ± 5.5% at recovery, P < .001). Sucralfate application at the time of injury or after injury significantly hastened recovery of barrier function (TER: 118.0 ± 15.2% of control at maximum injury, P < .001 and 111.0 ± 15.5% at recovery, P = .35). CONCLUSIONS AND CLINICAL IMPORTANCE Sucralfate appeared effective at restoring defects in gastric barrier function induced by acid and accelerating repair of tissues subjected to acid in this model, suggesting that sucralfate could have utility for the treatment and prevention of SRMD in dogs.
Collapse
Affiliation(s)
- Tracy L. Hill
- Department of Small Animal Medicine and Surgery, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgia
| | - B. Duncan X. Lascelles
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth Carolina
- Center for Pain Research and InnovationUNC School of DentistryChapel HillNorth Carolina
- Department of Anesthesiology, Center for Translational Pain ResearchDuke UniversityDurhamNorth Carolina
| | - Anthony T. Blikslager
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth Carolina
- Center for Gastrointestinal Biology and Disease, Large Animal Models CoreNorth Carolina State UniversityRaleighNorth Carolina
| |
Collapse
|
6
|
Liu Z, Xie W, Li M, Teng N, Liang X, Zhang Z, Yang Z, Wang X. Oral Administration of Polaprezinc Attenuates Fluorouracil-induced Intestinal Mucositis in a Mouse Model. Basic Clin Pharmacol Toxicol 2017; 121:480-486. [PMID: 28667794 DOI: 10.1111/bcpt.12841] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Zhaoyang Liu
- Tumor Marker Research Center; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Wenbo Xie
- Jilin Province Broadwell Pharmaceutical Co., Ltd.; Changchun China
| | - Mingru Li
- Jilin Province Broadwell Pharmaceutical Co., Ltd.; Changchun China
| | - Nan Teng
- Jilin Province Broadwell Pharmaceutical Co., Ltd.; Changchun China
| | - Xiao Liang
- State Key Laboratory of Molecular Oncology; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Ziqiang Zhang
- State Key Laboratory of Molecular Oncology; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Zhaogang Yang
- NSF Nanoscale Science and Engineering Center (NSEC); The Ohio State University; Columbus OH USA
| | - Xiaobing Wang
- Tumor Marker Research Center; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| |
Collapse
|
7
|
Han YM, Park JM, Choi YS, Jin H, Lee YS, Han NY, Lee H, Hahm KB. The efficacy of human placenta-derived mesenchymal stem cells on radiation enteropathy along with proteomic biomarkers predicting a favorable response. Stem Cell Res Ther 2017; 8:105. [PMID: 28464953 PMCID: PMC5414323 DOI: 10.1186/s13287-017-0559-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/22/2017] [Accepted: 04/08/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Radiation enteropathy is a common complication in patients with abdominopelvic cancer, but no treatment has yet been established. Stem cell therapy may be a viable therapeutic option because intestinal stem cells are highly vulnerable to ionizing radiation (IR) and stem cell loss explains its intractability to general treatment. Here, we investigated either prophylactic or therapeutic efficacy of human placenta-derived mesenchymal stem cells (hPDSCs) against radiation enteropathy and could identify biomarkers predicting a favorable response to stem cell therapy. METHODS We challenged a radiation-induced enteropathy model with hPDSCs. After sacrifice, we checked the gross anatomy of small intestine, histology gross, and analyzed that, accompanied with molecular changes implicated in this model. RESULTS hPDSCs significantly improved the outcome of mice induced with either radiation enteropathy or lethal radiation syndrome (P < 0.01). hPDSCs exerted inhibitory actions on inflammatory cytokines, the re-establishment of epithelium homeostasis was completed with increasing endogenous restorative processes as assessed with increased levels of proliferative markers in the hPDSCs group, and a significant inhibition of IR-induced apoptosis. The preservation of cells expressing lysozyme, and Musashi-1 were significantly increased in the hPDSC treatment group. Both preventive and therapeutic efficacies of hPDSCs were noted against IR-induced enteropathy. Label-free quantification was used to identify biomarkers which predict favorable responses after hPDSC treatment, and finally glutathione S-transferase-mu type, interleukin-10, and peroxiredoxin-2 were validated as proteomic biomarkers predicting a favorable response to hPDSCs in radiation enteropathy. CONCLUSIONS hPDSCs may be a useful prophylactic and therapeutic cell therapy for radiation enteropathy.
Collapse
Affiliation(s)
- Young-Min Han
- CHA Cancer Prevention Research Center, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do, 463-712, South Korea
| | - Jong-Min Park
- CHA Cancer Prevention Research Center, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do, 463-712, South Korea
| | - Yong Soo Choi
- Department of Applied Bioscience, CHA University, Seongnam, South Korea
| | - Hee Jin
- Graduated School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Yun-Sil Lee
- Graduated School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Na-Young Han
- Lee Gil Ya Cancer and Diabetes Institute, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Hookeun Lee
- Lee Gil Ya Cancer and Diabetes Institute, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Ki Baik Hahm
- CHA Cancer Prevention Research Center, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do, 463-712, South Korea. .,Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, South Korea.
| |
Collapse
|
8
|
Odawara S, Doi H, Shikata T, Kitajima K, Suzuki H, Niwa Y, Kosaka K, Tarutani K, Tsujimura T, Kamikonya N, Hirota S. Polaprezinc protects normal intestinal epithelium against exposure to ionizing radiation in mice. Mol Clin Oncol 2016; 5:377-381. [PMID: 27699029 PMCID: PMC5038609 DOI: 10.3892/mco.2016.983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/09/2016] [Indexed: 11/06/2022] Open
Abstract
Polaprezinc (PZ), an antiulcer drug, has been reported to have antioxidant effects. The purpose of the present study was to assess the radioprotective effects of PZ in the normal intestine of C57BL/6J mice. PZ was orally administered at 100 mg/kg body weight in the drinking water. Firstly, the present study compared the survival of normal intestinal crypt epithelial cells with mice that received PZ prior to or following irradiation. Next, the present study examined the sequential changes of the incidence of apoptosis in the normal intestine of mice that received irradiation. The mice that received PZ prior to irradiation demonstrated a stronger protective effect on the normal intestine compared with those that received PZ after irradiation. The present study therefore administrated PZ 2 h before irradiation in the subsequent experiments. The mice receiving PZ developed fewer apoptotic cells in the duodenum, jejunum and ileum. Radiation-induced cell death occurred with a peak at position 10 or lower from the base of the crypt axis, and was subsequently reduced by PZ treatment. Pretreatment with PZ protected the normal intestinal tissues from radiation-induced apoptosis.
Collapse
Affiliation(s)
- Soichi Odawara
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiroshi Doi
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Toshiyuki Shikata
- Department of Pharmacy, Hyogo College of Medicine Sasayama Medical Center, Sasayama, Hyogo 669-2321, Japan
| | - Kazuhiro Kitajima
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hitomi Suzuki
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Yasue Niwa
- Department of Therapeutic Radiology, Uji-Tokushukai Medical Center, Uji, Kyoto 611-0041, Japan
| | - Kengo Kosaka
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Kazuo Tarutani
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Tohru Tsujimura
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Norihiko Kamikonya
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Shozo Hirota
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
9
|
Ooi TC, Mohammad NH, Sharif R. Zinc carnosine protects against hydrogen peroxide-induced DNA damage in WIL2-NS lymphoblastoid cell line independent of poly (ADP-Ribose) polymerase expression. Biol Trace Elem Res 2014; 162:8-17. [PMID: 25326781 DOI: 10.1007/s12011-014-0153-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/07/2014] [Indexed: 12/13/2022]
Abstract
The aim of this study is to investigate the ability of zinc carnosine to protect the human lymphoblastoid (WIL2-NS) cell line from hydrogen peroxide-induced DNA damage. Cells were cultured with medium containing zinc carnosine at the concentrations of 0.4, 4, 16 and 32 μM for 9 days prior to treatment with 30 μM of hydrogen peroxide (30 min). Zinc carnosine at the concentration 16 μM was optimal in protecting cells from hydrogen peroxide-induced cytotoxicity and gave the lowest percentage of apoptotic and necrotic cells. Results showed that zinc carnosine was able to induce glutathione production and protect cells from hydrogen peroxide-induced oxidative stress at all concentration and the highest protection was observed at 32-μM zinc carnosine culture. Cytokinesis-block micronucleus cytome assay showed that cells cultured with 4-32 μM of zinc carnosine showed significant reduction in micronuclei formation, nucleoplasmic bridges and nuclear bud frequencies (p < 0.05), suggesting that these concentrations maybe optimal in protecting cells from hydrogen peroxide-induced DNA damage. However, after being challenged with hydrogen peroxide, no increase in poly(ADP-ribose) polymerase expression was observed. Thus, results from this study demonstrate that zinc carnosines possess antioxidant properties and are able to reduce hydrogen peroxide-induced DNA damage in vitro independent of poly(ADP-ribose) polymerase. Further studies are warranted to understand the mechanism of protection of zinc carnosine against hydrogen peroxide-induced damage.
Collapse
Affiliation(s)
- Theng Choon Ooi
- Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
10
|
Watari I, Oka S, Tanaka S, Aoyama T, Imagawa H, Shishido T, Yoshida S, Chayama K. Effectiveness of polaprezinc for low-dose aspirin-induced small-bowel mucosal injuries as evaluated by capsule endoscopy: a pilot randomized controlled study. BMC Gastroenterol 2013; 13:108. [PMID: 23826914 PMCID: PMC3704921 DOI: 10.1186/1471-230x-13-108] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 06/28/2013] [Indexed: 12/22/2022] Open
Abstract
Background Treatment of low-dose aspirin (LDA)-induced small-bowel injury has not been established. Polaprezinc, a chelate of zinc and L-carnosine, may be efficacious for such injury. We conducted a pilot randomized controlled study to investigate whether polaprezinc is effective against LDA-induced small-bowel injuries. Methods Consecutive patients under long-term (>3 months) LDA treatment and who agreed to participate in our study underwent initial capsule endoscopy (CE). Patients with LDA-induced small-bowel injury apparent upon initial CE (n = 20) were randomized into a polaprezinc (150 mg/day for 4 weeks) group and a control (no polaprezinc treatment) group. All underwent follow-up CE after 4 weeks. Changes in the number and characteristics of small-bowel mucosal injuries were compared within and between the two groups. Results The median number of reddened lesions and erosions/ulcers upon follow-up CE in the polaprezinc group significantly decreased (P < 0.05). However, there was no significant difference in the median number of reddened lesions and erosions/ulcers upon follow-up CE in the control group. Conclusions Co-administration of polaprezinc may be effective against small-bowel mucosal injury associated with long-term LDA therapy. Trial registration UMIN Clinical Trials Registry UMIN000003687.
Collapse
Affiliation(s)
- Ikue Watari
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Teruya K, Myojin-Maekawa Y, Shimamoto F, Watanabe H, Nakamichi N, Tokumaru K, Tokumaru S, Shirahata S. Protective effects of the fermented milk Kefir on X-ray irradiation-induced intestinal damage in B6C3F1 mice. Biol Pharm Bull 2012; 36:352-9. [PMID: 23229389 DOI: 10.1248/bpb.b12-00709] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Gastrointestinal damage associated with radiation therapy is currently an inevitable outcome. The protective effect of Kefir was assessed for its usefulness against radiation-induced gastrointestinal damage. A Kefir supernatant was diluted by 2- or 10-fold and administered for 1 week prior to 8 Gray (Gy) X-ray irradiation at a dose rate of 2 Gy/min, with an additional 15 d of administration post-irradiation. The survival rate of control mice with normal drinking water dropped to 70% on days 4 through 9 post-irradiation. On the other hand, 100% of mice in the 10- and 2-fold-diluted Kefir groups survived up to day 9 post-irradiation (p<0.05 and p<0.01, respectively). Examinations for crypt regeneration against 8, 10 and 12 Gy irradiation at a dose rate of 4 Gy/min revealed that the crypt number was significantly increased in the mice administered both diluted Kefir solutions (p<0.01 for each). Histological and immunohistochemical examinations revealed that the diluted Kefir solutions protected the crypts from radiation, and promoted crypt regeneration. In addition, lyophilized Kefir powder was found to significantly recover the testis weights (p<0.05), but had no effects on the body and spleen weights, after 8 Gy irradiation. These findings suggest that Kefir could be a promising candidate as a radiation-protective agent.
Collapse
Affiliation(s)
- Kiichiro Teruya
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812–8581, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Mineo Takei
- Pharmacological Research, Central Research Laboratories, Zeria Pharmaceutical Co., Ltd
| |
Collapse
|
13
|
Riedl E, Pfister F, Braunagel M, Brinkkötter P, Sternik P, Deinzer M, Bakker SJL, Henning RH, van den Born J, Krämer BK, Navis G, Hammes HP, Yard B, Koeppel H. Carnosine prevents apoptosis of glomerular cells and podocyte loss in STZ diabetic rats. Cell Physiol Biochem 2011; 28:279-88. [PMID: 21865735 DOI: 10.1159/000331740] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2011] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/AIMS We identified carnosinase-1 (CN-1) as risk-factor for diabetic nephropathy (DN). Carnosine, the substrate for CN-1, supposedly is a protective factor regarding diabetic complications. In this study, we hypothesized that carnosine administration to diabetic rats might protect the kidneys from glomerular apoptosis and podocyte loss. METHODS We examined the effect of oral L-carnosine administration (1g/kg BW per day) on apoptosis, podocyte loss, oxidative stress, AGEs and hexosamine pathway in kidneys of streptozotocin-induced diabetic Wistar rats after 3 months of diabetes and treatment. RESULTS Hyperglycemia significantly reduced endogenous kidney carnosine levels. In parallel, podocyte numbers significantly decreased (-21% compared to non-diabetics, p<0.05), apoptotic glomerular cells numbers increased (32%, compared to non-diabetic, p<0.05) and protein levels of bax and cytochrome c increased (175% and 117%). Carnosine treatment restored carnosine kidney levels, prevented podocytes loss (+23% compared to diabetic, p<0.05), restrained glomerular apoptosis (-34% compared to diabetic; p<0.05) and reduced expression of bax and cytochrome c (-63% and -54% compared to diabetics, both p<0.05). In kidneys of all diabetic animals, levels of ROS, AGEs and GlcNAc-modified proteins were increased. CONCLUSION By inhibition of pro-apoptotic signaling and independent of biochemical abnormalities, carnosine protects diabetic rat kidneys from apoptosis and podocyte loss.
Collapse
Affiliation(s)
- Eva Riedl
- 5th Medical Clinic, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Doi H, Kamikonya N, Takada Y, Fujiwara M, Tsuboi K, Inoue H, Tanooka M, Nakamura T, Shikata T, Tsujimura T, Hirota S. Efficacy of polaprezinc for acute radiation proctitis in a rat model. Int J Radiat Oncol Biol Phys 2011; 80:877-84. [PMID: 21377290 DOI: 10.1016/j.ijrobp.2011.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 12/24/2010] [Accepted: 01/10/2011] [Indexed: 12/31/2022]
Abstract
PURPOSE The purpose of the present study was to standardize the experimental rat model of radiation proctitis and to examine the efficacy of polaprezinc on radiation proctitis. METHODS AND MATERIALS A total of 54 female Wistar rats (5 weeks old) were used. The rats were divided into three groups: those treated with polaprezinc (PZ+), those treated with base alone, exclusive of polaprezinc (PZ-), and those treated without any medication (control). All the rats were irradiated to the rectum. Polaprezinc was prepared as an ointment. The ointment was administered rectally each day after irradiation. All rats were killed on the 10th day after irradiation. The mucosal changes were evaluated endoscopically and pathologically. The results were graded from 0 to 4 and compared according to milder or more severe status, as applicable. RESULTS According to the endoscopic findings, the proportion of mild changes in the PZ+, PZ-, and control group was 71.4%, 25.0%, and 14.3% respectively. On pathologic examination, the proportion of low-grade findings in the PZ+, PZ-, and control group was 80.0%, 58.3%, and 42.9% for mucosal damage, 85.0%, 41.7%, and 42.9% for a mild degree of inflammation, and 50.0%, 33.3%, and 4.8% for a shallow depth of inflammation, respectively. The PZ+ group tended to have milder mucosal damage than the other groups, according to all criteria used. In addition, significant differences were observed between the PZ+ and control groups regarding the endoscopic findings, degree of inflammation, and depth of inflammation. CONCLUSIONS This model was confirmed to be a useful experimental rat model for radiation proctitis. The results of the present study have demonstrated the efficacy of polaprezinc against acute radiation-induced rectal disorders using the rat model.
Collapse
Affiliation(s)
- Hiroshi Doi
- Department of Radiology, Hyogo College of Medicine, Hyogo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sharif R, Thomas P, Zalewski P, Graham RD, Fenech M. The effect of zinc sulphate and zinc carnosine on genome stability and cytotoxicity in the WIL2-NS human lymphoblastoid cell line. Mutat Res 2011; 720:22-33. [PMID: 21167308 DOI: 10.1016/j.mrgentox.2010.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 11/15/2010] [Accepted: 12/02/2010] [Indexed: 05/30/2023]
Abstract
Zinc (Zn) is an essential cofactor required by numerous enzymes that are essential for cell metabolism and the maintenance of DNA integrity. We investigated the effect of Zn deficiency or excess on genomic instability events and determined the optimal concentration of two Zn compounds that minimize DNA-damage events. The effects of Zn sulphate (ZnSO(4)) and Zn carnosine (ZnC) on cell proliferation were investigated in the WIL2-NS human lymphoblastoid cell line. DNA damage was determined by the use of both the comet assay and the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. Zn-deficient medium (0μM) was produced using Chelex treatment, and the two Zn compounds (i.e. ZnSO(4) and ZnC) were tested at concentrations of 0.0, 0.4, 4.0, 16.0, 32.0 and 100.0μM. Results from an MTT assay showed that cell growth and viability were decreased in Zn-depleted cells (0μM) as well as at 32μM and 100μM for both Zn compounds (P<0.0001). DNA strand-breaks, as measured by the comet assay, were found to be increased in Zn-depleted cells compared with the other treatment groups (P<0.05). The CBMN-Cyt assay showed a significant increase in the frequency of both apoptotic and necrotic cells under Zn-deficient conditions (P<0.0001). Elevated frequencies of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) were induced in Zn-depleted cells (P<0.0001), whereas genome damage was reduced in supplemented cultures for both Zn compounds at 4μM and 16μM, possibly suggesting that these concentrations may be optimal for genome stability. The potential protective effect of ZnSO(4) and ZnC was also investigated following exposure to 1.0Gy γ-radiation. Culture in medium containing these compounds at 4-32μM prior to irradiation displayed significantly reduced frequencies of MNi, NPBs and NBuds compared with cells maintained in 0μM medium (P<0.0001). Expression of γ-H2AX and 8-oxoguanine glycosylase measured by western blotting was increased in Zn-depleted cells. These results suggest that Zn plays important role in genomic stability and that the optimal Zn concentration-range for prevention of DNA damage and cytotoxicity in vitro lies between 4 and 16μM.
Collapse
Affiliation(s)
- Razinah Sharif
- CSIRO Food and Nutritional Sciences, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Matsuu-Matsuyama M, Nakashima M, Shichijo K, Okaichi K, Nakayama T, Sekine I. Basic Fibroblast Growth Factor Suppresses Radiation-Induced Apoptosis and TP53 Pathway in Rat Small Intestine. Radiat Res 2010; 174:52-61. [DOI: 10.1667/rr1802.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Omatsu T, Naito Y, Handa O, Mizushima K, Hayashi N, Qin Y, Harusato A, Hirata I, Kishimoto E, Okada H, Uchiyama K, Ishikawa T, Takagi T, Yagi N, Kokura S, Ichikawa H, Yoshikawa T. Reactive oxygen species-quenching and anti-apoptotic effect of polaprezinc on indomethacin-induced small intestinal epithelial cell injury. J Gastroenterol 2010; 45:692-702. [PMID: 20174833 DOI: 10.1007/s00535-010-0213-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/19/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND To protect the small intestine from mucosal injury induced by nonsteroidal anti-inflammatory drugs is one of the critical issues in the field of gastroenterology. Polaprezinc (PZ), a gastric muco-protecting agent, has been widely used for the treatment of gastric ulcer and gastritis for its unique effects, such as its strong reactive oxygen species (ROS)-quenching effect. The aim of this study was to clarify the mechanism by which indomethacin-induced small intestinal mucosal injury occurs, by using a rat intestinal epithelial cell line (RIE-1). In addition, the protective role of PZ and the possible mechanism of its effect on indomethacin-induced small intestinal injury were investigated. METHODS Cell death was evaluated by methyl thiazolyl tetrazolium (MTT) assay and a double-staining method with Hoechst33342 dye and propidium iodide. Indomethacin-induced ROS production was evaluated by detecting the oxidation of a redox-sensitive fluorogenic probe, RedoxSensor, and the oxidation of cysteine residues of proteins (protein S oxidation). The activation of cytochrome c, smac/DIABLO, and caspase-3 was assessed by western blotting. In some experiments, PZ or its components, L: -carnosine and zinc, were used. RESULTS We found that indomethacin caused apoptosis in RIE-1 cells in a dose- and time-dependent manner. Indomethacin also induced ROS production and an increase in the protein S oxidation of RIE-1. Pretreatment of RIE-1 with PZ or zinc sulfate, but not L: -carnosine, significantly reduced the indomethacin-induced apoptosis. PZ prevented ROS production and the increase in protein S-oxidation. PZ inhibited indomethacin-induced cytochrome c and smac/DIABLO release and subsequent caspase-3 activation. CONCLUSIONS The protective effect of PZ on indomethacin-induced small intestinal injury may be dependent on its ROS-quenching effect.
Collapse
Affiliation(s)
- Tatsushi Omatsu
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ohata S, Moriyama C, Yamashita A, Nishida T, Kusumoto C, Mochida S, Minami Y, Nakada J, Shomori K, Inagaki Y, Ohta Y, Matsura T. Polaprezinc Protects Mice against Endotoxin Shock. J Clin Biochem Nutr 2010; 46:234-43. [PMID: 20490319 PMCID: PMC2872229 DOI: 10.3164/jcbn.09-125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/02/2010] [Indexed: 12/20/2022] Open
Abstract
Polaprezinc (PZ), a chelate compound consisting of zinc and l-carnosine (Car), is an anti-ulcer drug developed in Japan. In the present study, we investigated whether PZ suppresses mortality, pulmonary inflammation, and plasma nitric oxide (NO) and tumor necrosis factor (TNF)-α levels in endotoxin shock mice after peritoneal injection of lipopolysaccharide (LPS), and how PZ protects against LPS-induced endotoxin shock. PZ pretreatment inhibited the decrease in the survival rate of mice after LPS injection. PZ inhibited the increases in plasma NO as well as TNF-α after LPS. Compatibly, PZ suppressed LPS-induced inducible NO synthase mRNA transcription in the mouse lungs. PZ also improved LPS-induced lung injury. However, PZ did not enhance the induction of heat shock protein (HSP) 70 in the mouse lungs after LPS. Pretreatment of RAW264 cells with PZ suppressed the production of NO and TNF-α after LPS addition. This inhibition likely resulted from the inhibitory effect of PZ on LPS-mediated nuclear factor-κB (NF-κB) activation. Zinc sulfate, but not Car, suppressed NO production after LPS. These results indicate that PZ, in particular its zinc subcomponent, inhibits LPS-induced endotoxin shock via the inhibition of NF-κB activation and subsequent induction of proinflammatory products such as NO and TNF-α, but not HSP induction.
Collapse
Affiliation(s)
- Shuzo Ohata
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yamamoto T, Kinoshita M, Shinomiya N, Hiroi S, Sugasawa H, Matsushita Y, Majima T, Saitoh D, Seki S. Pretreatment with ascorbic acid prevents lethal gastrointestinal syndrome in mice receiving a massive amount of radiation. JOURNAL OF RADIATION RESEARCH 2009; 51:145-156. [PMID: 19959877 DOI: 10.1269/jrr.09078] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
While bone marrow or stem cell transplantation can rescue bone marrow aplasia in patients accidentally exposed to a lethal radiation dose, radiation-induced irreversible gastrointestinal damage (GI syndrome) is fatal. We investigated the effects of ascorbic acid on radiation-induced GI syndrome in mice. Ascorbic acid (150 mg/kg/day) was orally administered to mice for 3 days, and then the mice underwent whole body irradiation (WBI). Bone marrow transplantation (BMT) 24 h after irradiation rescued mice receiving a WBI dose of less than 12 Gy. No mice receiving 14 Gy-WBI survived, because of radiation-induced GI syndrome, even if they received BMT. However, pretreatment with ascorbic acid significantly suppressed radiation-induced DNA damage in the crypt cells and prevented denudation of intestinal mucosa; therefore, ascorbic acid in combination with BMT rescued mice after 14 Gy-WBI. DNA microarray analysis demonstrated that irradiation up-regulated expressions of apoptosis-related genes in the small intestine, including those related to the caspase-9-mediated intrinsic pathway as well as the caspase-8-mediated extrinsic pathway, and down-regulated expressions of these genes in ascorbic acid-pretreated mice. Thus, pretreatment with ascorbic acid may effectively prevent radiation-induced GI syndrome.
Collapse
Affiliation(s)
- Tetsuo Yamamoto
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lim YJ, Lee JS, Ku YS, Hahm KB. Rescue strategies against non-steroidal anti-inflammatory drug-induced gastroduodenal damage. J Gastroenterol Hepatol 2009; 24:1169-78. [PMID: 19682191 DOI: 10.1111/j.1440-1746.2009.05929.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are the most commonly prescribed drugs worldwide, which attests to their efficacy as analgesic, antipyretic and anti-inflammatory agents as well as anticancer drugs. However, NSAID use also carries a risk of major gastroduodenal events, including symptomatic ulcers and their serious complications that can lead to fatal outcomes. The development of "coxibs" (selective cyclooxygenase-2 [COX-2] inhibitors) offered similar efficacy with reduced toxicity, but this promise of gastroduodenal safety has only partially been fulfilled, and is now dented with associated risks of cardiovascular or intestinal complications. Recent advances in basic science and biotechnology have given insights into molecular mechanisms of NSAID-induced gastroduodenal damage beyond COX-2 inhibition. The emergence of newer kinds of NSAIDs should alleviate gastroduodenal toxicity without compromising innate drug efficacy. In this review, novel strategies for avoiding NSAID-associated gastroduodenal damage will be described.
Collapse
Affiliation(s)
- Yun Jeong Lim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | | | | | | |
Collapse
|