1
|
Mayfosh AJ, Nguyen TK, Hulett MD. The Heparanase Regulatory Network in Health and Disease. Int J Mol Sci 2021; 22:11096. [PMID: 34681753 PMCID: PMC8541136 DOI: 10.3390/ijms222011096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) is a structural framework that has many important physiological functions which include maintaining tissue structure and integrity, serving as a barrier to invading pathogens, and acting as a reservoir for bioactive molecules. This cellular scaffold is made up of various types of macromolecules including heparan sulfate proteoglycans (HSPGs). HSPGs comprise a protein core linked to the complex glycosaminoglycan heparan sulfate (HS), the remodeling of which is important for many physiological processes such as wound healing as well as pathological processes including cancer metastasis. Turnover of HS is tightly regulated by a single enzyme capable of cleaving HS side chains: heparanase. Heparanase upregulation has been identified in many inflammatory diseases including atherosclerosis, fibrosis, and cancer, where it has been shown to play multiple roles in processes such as epithelial-mesenchymal transition, angiogenesis, and cancer metastasis. Heparanase expression and activity are tightly regulated. Understanding the regulation of heparanase and its downstream targets is attractive for the development of treatments for these diseases. This review provides a comprehensive overview of the regulators of heparanase as well as the enzyme's downstream gene and protein targets, and implications for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alyce J. Mayfosh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Tien K. Nguyen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Mark D. Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| |
Collapse
|
2
|
Jiang L, Jia H, Tang Z, Zhu X, Cao Y, Tang Y, Yu H, Cao J, Zhang H, Zhang S. Proteomic Analysis of Radiation-Induced Acute Liver Damage in a Rabbit Model. Dose Response 2019; 17:1559325819889508. [PMID: 31827415 PMCID: PMC6886284 DOI: 10.1177/1559325819889508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022] Open
Abstract
Radiation-induced liver damage (RILD) has become a limitation in radiotherapy for hepatocellular carcinoma. We established a rabbit model of RILD by CyberKnife. Electron microscopy analysis revealed obvious nuclear atrophy and disposition of fat in the nucleus after irradiation. We then utilized a mass spectrometry-based label-free relative quantitative proteomics approach to compare global proteomic changes of rabbit liver in response to radiation. In total, 2365 proteins were identified, including 338 proteins that were significantly dysregulated between irradiated and nonirradiated liver tissues. These differentially expressed proteins included USP47, POLR2A, CSTB, MCFD2, and CSNK2A1. Real-time polymerase chain reaction confirmed that USP47 and CABLES1 transcripts were significantly higher in irradiated liver tissues, whereas MCFD2 and CSNK2A1 expressions were significantly reduced. In Clusters of Orthologous Groups of proteins analysis, differentially expressed proteins were annotated and divided into 24 categories, including posttranslational modification, protein turnover, and chaperones. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the enriched pathways in dysregulated proteins included the vascular endothelial growth factors (VEGF) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, and the adipocytokine signaling pathway. The identification of proteins and pathways is crucial toward elucidating the radiation response process of the liver, which may facilitate the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Lingong Jiang
- Department of Radiation Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Huimin Jia
- School of Radiation Medicine and Protection and State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Zhicheng Tang
- School of Radiation Medicine and Protection and State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Xiaofei Zhu
- Department of Radiation Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yangsen Cao
- Department of Radiation Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yin Tang
- Department of Radiation Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Haiyan Yu
- Department of Radiation Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianping Cao
- School of Radiation Medicine and Protection and State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Huojun Zhang
- Department of Radiation Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection and State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China.,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.,Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| |
Collapse
|
3
|
Lacombe J, Brengues M, Mangé A, Bourgier C, Gourgou S, Pèlegrin A, Ozsahin M, Solassol J, Azria D. Quantitative proteomic analysis reveals AK2 as potential biomarker for late normal tissue radiotoxicity. Radiat Oncol 2019; 14:142. [PMID: 31399108 PMCID: PMC6688300 DOI: 10.1186/s13014-019-1351-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
Background Biomarkers for predicting late normal tissue toxicity to radiotherapy are necessary to personalize treatments and to optimize clinical benefit. Many radiogenomic studies have been published on this topic. Conversely, proteomics approaches are not much developed, despite their advantages. Methods We used the isobaric tags for relative and absolute quantitation (iTRAQ) proteomic approach to analyze differences in protein expression levels in ex-vivo irradiated (8 Gy) T lymphocytes from patients with grade ≥ 2 radiation-induced breast fibrosis (grade ≥ 2 bf+) and patients with grade < 2 bf + after curative intent radiotherapy. Patients were selected from two prospective clinical trials (COHORT and PHRC 2005) and were used as discovery and confirmation cohorts. Results Among the 1979 quantified proteins, 23 fulfilled our stringent biological criteria. Immunoblotting analysis of four of these candidate proteins (adenylate kinase 2, AK2; annexin A1; heat shock cognate 71 kDa protein; and isocitrate dehydrogenase 2) confirmed AK2 overexpression in 8 Gy-irradiated T lymphocytes from patients with grade ≥ 2 bf + compared with patients with grade < 2 bf+. As these candidate proteins are involved in oxidative stress regulation, we also evaluated radiation-induced reactive oxygen species (ROS) production in peripheral blood mononuclear cells from patients with grade ≥ 2 bf + and grade < 2 bf+. Total ROS level, and especially superoxide anion level, increased upon ex-vivo 8 Gy-irradiation in all patients. Analysis of NADPH oxidases (NOXs), a major source of superoxide ion in the cell, showed a significant increase of NOX4 mRNA and protein levels after irradiation in both patient groups. Conversely, only NOX4 mRNA level was significantly different between groups (grade ≥ 2 bf + and grade < 2 bf+). Conclusion These findings identify AK2 as a potential radiosensitivity candidate biomarker. Overall, our proteomic approach highlights the important role of oxidative stress in late radiation-induced toxicity, and paves the way for additional studies on NOXs and superoxide ion metabolism. Electronic supplementary material The online version of this article (10.1186/s13014-019-1351-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jérôme Lacombe
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Muriel Brengues
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Alain Mangé
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Céline Bourgier
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | | | - André Pèlegrin
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | | | - Jérôme Solassol
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France.,Department of Pathology and Onco-Biology, CHU Montpellier, Montpellier, France
| | - David Azria
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France. .,Department of Radiation Oncology, ICM, 34298, Montpellier Cedex 5, France.
| |
Collapse
|
4
|
Imaeda M, Ishikawa H, Yoshida Y, Takahashi T, Ohkubo Y, Musha A, Komachi M, Nakazato Y, Nakano T. Long-term pathological and immunohistochemical features in the liver after intraoperative whole-liver irradiation in rats. JOURNAL OF RADIATION RESEARCH 2014; 55:665-673. [PMID: 24566720 PMCID: PMC4099997 DOI: 10.1093/jrr/rru005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
Radiation therapy (RT) has become particularly important recently for treatment of liver tumors, but there are few experimental investigations pertaining to radiation-induced liver injuries over long-term follow-up periods. Thus, the present study examined pathological liver features over a 10-month period using an intraoperative whole-liver irradiation model. Liver function tests were performed in blood samples, whereas cell death, cell proliferation, and fibrotic changes were evaluated pathologically in liver tissues, which were collected from irradiated rats 24 h, 1, 2, 4 and 40 weeks following administration of single irradiation doses of 0 (control), 15 or 30 Gy. The impaired liver function, increased hepatocyte number, and decreased apoptotic cell proportion observed in the 15 Gy group, but not the 30 Gy group, returned to control group levels after 40 weeks; however, the Ki-67 indexes in the 15 Gy group were still higher than those in the control group after 40 weeks. Azan staining showed a fibrotic pattern in the irradiated liver in the 30 Gy group only, but the expression levels of alpha smooth muscle actin (α-SMA) and transforming growth factor-beta 1 (TGF-β1) in both the 15 and 30 Gy groups were significantly higher than those in the control group (P < 0.05). There were differences in the pathological features of the irradiated livers between the 15 Gy and 30 Gy groups, but TGF-β1 and α-SMA expression patterns supported the gradual progression of radiation-induced liver fibrosis in both groups. These findings will be useful in the future development of protective drugs for radiation-induced liver injury.
Collapse
Affiliation(s)
- Masumi Imaeda
- Department of Radiation Oncology, Gunma University, Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Hitoshi Ishikawa
- Department of Radiation Oncology, University of Tsukuba, Faculty of Medicine, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukari Yoshida
- Department of Radiation Oncology, Gunma University, Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Takeo Takahashi
- Department of Radiation Oncology, Saitama Medical University, 1981 Kamodatsujido, Kawagoe, Saitama 350-8550, Japan
| | - Yu Ohkubo
- Department of Radiation Oncology, Gunma University, Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Atsushi Musha
- Department of Radiation Oncology, Gunma University, Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Mayumi Komachi
- Department of Radiation Oncology, Gunma University, Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Yoichi Nakazato
- Department of Pathology, Hidaka Hospital, 886 Nakao, Takasaki, Gunma 370-0001, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University, Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
5
|
Tsai CL, Koong AC, Hsu FM, Graber M, Chen IS, Cheng JCH. Biomarker studies on radiotherapy to hepatocellular carcinoma. Oncology 2013; 84 Suppl 1:64-8. [PMID: 23428861 DOI: 10.1159/000345892] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Radiotherapy (RT) has been gradually integrated into the multimodality treatment for hepatocellular carcinoma (HCC). The various patterns of failure in HCC patients undergoing RT drive the need of effective biomarkers to guide treatment decisions. Limited numbers of biomarkers have been investigated in HCC, with even fewer of them for patients treated by RT. Serum or plasma biomarkers measured by enzyme-linked immunosorbent assay were the most common practice. Of particular interest are those biomarkers that are detectable early in the course of radiotherapy which correlated with ultimate clinical outcome. Functional magnetic resonance imaging (MRI) is increasingly used to evaluate the imaging pattern indicative of disease control following RT. Positron emission tomography shows that pre-RT standard uptake values associate with various types of recurrence after treatment. Proximity ligation assay (PLA) is evolving with the unique features of dual-probe identification, ligation and amplification to allow the small volume of serum/plasma samples for evaluating multiple biomarkers. We demonstrate the screening work of biomarkers by PLA with pre- and post-RT serum samples from HCC patients undergoing RT. Efforts are being made to search for the potential biomarkers for HCC patients treated by RT.
Collapse
Affiliation(s)
- Chiao-Ling Tsai
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
6
|
Gong G, Yin Y, Guo Y, Liu T, Chen J, Lu J, Ma C, Sun T, Bai T, Zhang G, Li D, Wang R. Dosimetric differences among volumetric modulated arc radiotherapy (RapidArc) plans based on different target volumes in radiotherapy of hepatocellular carcinoma. JOURNAL OF RADIATION RESEARCH 2013; 54:182-189. [PMID: 22915784 PMCID: PMC3534270 DOI: 10.1093/jrr/rrs068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
We investigated the dosimetric differences among volumetric-modulated arc radiotherapy (RapidArc, RA) plans designed for various target volumes in hepatocellular carcinoma (HCC). Ten HCC patients underwent 3D-CT scanning at free breathing (FB), 3D-CT at end inspiration hold (EIH) assisted by an Active Breathing Coordinator (ABC), and 4D-CT scanning. Gross tumor volumes (GTVs) were manually contoured on CT images. The individualized internal gross target volume (IGTV(1)) was obtained from 10 GTVs from 4D-CT images. Tumor individual margins were measured from GTV(FB) to IGTV(1). The IGTV(2) was obtained from GTV(FB) by applying individual margins. Four planning target volumes (PTV(1-4)) were obtained from IGTV(1), IGTV(2), GTV(FB), and GTV(EIH), respectively. An RA plan was designed for each of the PTVs (RA(1-4)). One 358° arc was used for PTVs(1-3), while three 135° arcs were used for PTV(4). It was found that PTV(2) and PTV(3) were larger than PTV(1) and PTV(4). The mean values of PTV(3)/PTV(1) and PTV(3)/PTV(4) were 2.5 and 1.9, respectively. The individual margins in the X, Y and Z axial directions varied greatly among these patients. There were no significant differences in the conformal index or homogeneity index among the four RA plans. RA(1) and RA(4) significantly reduced the radiation dose of normal liver tissue compared with RA(2) and RA(3) (P < 0.01). There were no significant differences between the radiation doses of the stomach and duodenum. RapidArc combined with 4D-CT or ABC technology is a promising method in radiotherapy of HCC, and accurately targeted the tumor volume while sparing more normal liver tissue.
Collapse
Affiliation(s)
| | - Yong Yin
- Corresponding author. Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Academy of Medical Sciences, 440 Jiyan Road, 250117 Jinan, China. Tel: +86-531-6762-6524; Fax: +86-531-6762-6427;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang S, Hyun J, Youn B, Jung Y. Hedgehog Signaling Regulates the Repair Response in Mouse Liver Damaged by Irradiation. Radiat Res 2013; 179:69-75. [DOI: 10.1667/rr3091.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
8
|
Guipaud O. Serum and plasma proteomics and its possible use as detector and predictor of radiation diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 990:61-86. [PMID: 23378003 DOI: 10.1007/978-94-007-5896-4_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
All tissues can be damaged by ionizing radiation. Early biomarkers of radiation injury are critical for triage, treatment and follow-up of large numbers of people exposed to ionizing radiation after terrorist attacks or radiological accident, and for prediction of normal tissue toxicity before, during and after a treatment by radiotherapy. The comparative proteomic approach is a promising and powerful tool for the discovery of new radiation biomarkers. In association with multivariate statistics, proteomics enables measurement of the level of hundreds or thousands of proteins at the same time and identifies set of proteins that can discriminate between different groups of individuals. Human serum and plasma are the preferred samples for the study of normal and disease-associated proteins. Extreme complexity, extensive dynamic range, genetic and physiological variations, protein modifications and incompleteness of sampling by two-dimensional electrophoresis and mass spectrometry represent key challenges to reproducible, high-resolution, and high-throughput analyses of serum and plasma proteomes. The future of radiation research will possibly lie in molecular networks that link genome, transcriptome, proteome and metabolome variations to radiation pathophysiology and serve as sensors of radiation disease. This chapter reviews recent advances in proteome analysis of serum and plasma as well as its applications to radiation biology and radiation biomarker discovery for both radiation exposure and radiation tissue toxicity.
Collapse
Affiliation(s)
- Olivier Guipaud
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, LRTE, 17, Fontenay-aux-Roses cedex, 92262, France.
| |
Collapse
|
9
|
Vlodavsky I, Beckhove P, Lerner I, Pisano C, Meirovitz A, Ilan N, Elkin M. Significance of heparanase in cancer and inflammation. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2012; 5:115-32. [PMID: 21811836 PMCID: PMC3399068 DOI: 10.1007/s12307-011-0082-7] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 07/22/2011] [Indexed: 02/07/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are primary components at the interface between virtually every eukaryotic cell and its extracellular matrix. HSPGs not only provide a storage depot for heparin-binding molecules in the cell microenvironment, but also decisively regulate their accessibility, function and mode of action. As such, they are intimately involved in modulating cell invasion and signaling loops that are critical for tumor growth, inflammation and kidney function. In a series of studies performed since the cloning of the human heparanase gene, we and others have demonstrated that heparanase, the sole heparan sulfate degrading endoglycosidase, is causally involved in cancer progression, inflammation and diabetic nephropathy and hence is a valid target for drug development. Heparanase is causally involved in inflammation and accelerates colon tumorigenesis associated with inflammatory bowel disease. Notably, heparanase stimulates macrophage activation, while macrophages induce production and activation of latent heparanase contributed by the colon epithelium, together generating a vicious cycle that powers colitis and the associated tumorigenesis. Heparanase also plays a decisive role in the pathogenesis of diabetic nephropathy, degrading heparan sulfate in the glomerular basement membrane and ultimately leading to proteinuria and kidney dysfunction. Notably, clinically relevant doses of ionizing radiation (IR) upregulate heparanase expression and thereby augment the metastatic potential of pancreatic carcinoma. Thus, combining radiotherapy with heparanase inhibition is an effective strategy to prevent tumor resistance and dissemination in IR-treated pancreatic cancer patients. Also, accumulating evidence indicate that peptides derived from human heparanase elicit a potent anti-tumor immune response, suggesting that heparanase represents a promising target antigen for immunotherapeutic approaches against a broad variety of tumours. Oligosaccharide-based compounds that inhibit heparanase enzymatic activity were developed, aiming primarily at halting tumor growth, metastasis and angiogenesis. Some of these compounds are being evaluated in clinical trials, targeting both the tumor and tumor microenvironment.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine, Technion, P. O. Box 9649, Haifa, 31096, Israel,
| | | | | | | | | | | | | |
Collapse
|
10
|
Park MT, Oh ET, Song MJ, Lee H, Park HJ. Radio-sensitivities and angiogenic signaling pathways of irradiated normal endothelial cells derived from diverse human organs. JOURNAL OF RADIATION RESEARCH 2012; 53:570-580. [PMID: 22843622 PMCID: PMC3393354 DOI: 10.1093/jrr/rrs011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/12/2012] [Accepted: 03/19/2012] [Indexed: 05/30/2023]
Abstract
The purpose of the present investigation was to study the effects of ionizing radiation on endothelial cells derived from diverse normal tissues. We first compared the effects of radiation on clonogenic survival and tube formation of endothelial cells, and then investigated the molecular signaling pathways involved in endothelial cell survival and angiogenesis. Among the different endothelial cells studied, human hepatic sinusoidal endothelial cells (HHSECs) were the most radio-resistant and human dermal microvascular endothelial cells were the most radio-sensitive. The radio-resistance of HHSECs was related to adenosine monophosphate-activated protein kinase and p38 mitogen-activated protein kinase-mediated expression of MMP-2 and VEGFR-2, whereas the increased radio-sensitivity of HDMECs was related to extracellular signal-regulated kinase-mediated generation of angiostatin. These observations demonstrate that there are distinct differences in the radiation responses of normal endothelial cells obtained from diverse organs, which may provide important clues for protection of normal tissue from radiation exposure.
Collapse
Affiliation(s)
- Moon-Taek Park
- Corresponding author. Department of Microbiology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Jungsuck B/D B-Dong 3F, 7-241, 3rd Street, Shinheung-Dong, Jung-Gu, Incheon, 400-712, Republic of Korea; Tel: +82-32-890-0953; Fax: +82-32-881-8559;
| | | | | | | | | |
Collapse
|
11
|
Current World Literature. Curr Opin Support Palliat Care 2012; 6:109-25. [DOI: 10.1097/spc.0b013e328350f70c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Gu K, Lai ST, Ma NY, Zhao JD, Ren ZG, Wang J, Liu J, Jiang GL. Hepatic regeneration after sublethal partial liver irradiation in cirrhotic rats. JOURNAL OF RADIATION RESEARCH 2011; 52:582-591. [PMID: 21952315 DOI: 10.1269/jrr.11002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Our previous animal study had demonstrated that partial liver irradiation (IR) could stimulate regeneration in the protected liver, which supported the measurements adopted in radiotherapy planning for hepatocellular carcinoma. The purpose of this present study is to investigate whether cirrhotic liver repopulation could be triggered by partial liver IR. The cirrhosis was induced by thioacetamide (TAA) in rats. After cirrhosis establishment, TAA was withdrawn. In Experiment 1, only right-half liver was irradiated with single doses of 5 Gy, 10 Gy and 15 Gy, respectively. In Experiment 2, right-half liver was irradiated to 15 Gy, and the left-half to 2.5 Gy, 5 Gy and 7.5 Gy, respectively. The regeneration endpoints, including liver index (LI); mitotic index (MI); liver proliferation index (LPI); PCNA-labeling index (PCNA-LI); serum HGF, VEGF, TGF-α and IL-6, were evaluated on 0 day, 30-day, 60-day, 90-day, 120-day and 150-day after IR. Serum and in situ TGF-β1 were also measured. In both experimental groups, the IR injuries were sublethal, inducing no more than 9% animal deaths. Upon TAA withdrawal, hepatic regeneration decelerated in the controls. In Experiment 1 except for LI, all other regeneration parameters were significantly higher than those in controls for both right-half and left-half livers. In Experiment 2 all regeneration parameters were also higher compared with those in controls for both half livers. Serum HGF and VEGF were increased compared with that of controls. Both unirradiated and low dose-irradiated cirrhotic liver were able to regenerate triggered by sublethal partial liver IR and higher doses and IR to both halves liver triggered a more enhanced regeneration.
Collapse
Affiliation(s)
- Ke Gu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|