1
|
Wu T, Gu X, Cui H. Emerging Roles of SKP2 in Cancer Drug Resistance. Cells 2021; 10:cells10051147. [PMID: 34068643 PMCID: PMC8150781 DOI: 10.3390/cells10051147] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
More than half of all cancer patients receive chemotherapy, however, some of them easily acquire drug resistance. Resistance to chemotherapy has become a massive obstacle to achieve high rates of pathological complete response during cancer therapy. S-phase kinase-associated protein 2 (Skp2), as an E3 ligase, was found to be highly correlated with drug resistance and poor prognosis. In this review, we summarize the mechanisms that Skp2 confers to drug resistance, including the Akt-Skp2 feedback loop, Skp2-p27 pathway, cell cycle and mitosis regulation, EMT (epithelial-mesenchymal transition) property, enhanced DNA damage response and repair, etc. We also addressed novel molecules that either inhibit Skp2 expression or target Skp2-centered interactions, which might have vast potential for application in clinics and benefit cancer patients in the future.
Collapse
Affiliation(s)
- Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China;
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China;
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China;
- Correspondence:
| |
Collapse
|
2
|
Zhang H, Si J, Yue J, Ma S. The mechanisms and reversal strategies of tumor radioresistance in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 2021; 147:1275-1286. [PMID: 33687564 DOI: 10.1007/s00432-020-03493-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 01/16/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of most lethal malignancies with high aggressive potential in the world. Radiotherapy is used as one curative treatment modality for ESCC patients. Due to radioresistance, the 5-year survival rates of patients after radiotherapy is less than 20%. Tumor radioresistance is very complex and heterogeneous. Cancer-associated fibroblasts (CAFs), as one major component of tumor microenvironment (TME), play critical roles in regulating tumor radioresponse through multiple mechanisms and are increasingly considered as important anti-cancer targets. Cancer stemness, which renders cancer cells to be extremely resistant to conventional therapies, is involved in ESCC radioresistance due to the activation of Wnt/β-catenin, Notch, Hedgehog and Hippo (HH) pathways, or the induction of epithelial-mesenchymal transition (EMT), hypoxia and autophagy. Non-protein-coding RNAs (ncRNAs), which account for more than 90% of the genome, are involved in esophageal cancer initiation and progression through regulating the activation or inactivation of downstream signaling pathways and the expressions of target genes. Herein, we mainly reviewed the role of CAFs, cancer stemness, non-coding RNAs as well as others in the development of radioresistance and clarify the involved mechanisms. Furthermore, we summarized the potential strategies which were reported to reverse radioresistance in ESCC. Together, this review gives a systematic coverage of radioresistance mechanisms and reversal strategies and contributes to better understanding of tumor radioresistance for the exploitation of novel intervention strategies in ESCC.
Collapse
Affiliation(s)
- Hongfang Zhang
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jingxing Si
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Jing Yue
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Shenglin Ma
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Fu S, Wang Y, Li H, Chen L, Liu Q. Regulatory Networks of LncRNA MALAT-1 in Cancer. Cancer Manag Res 2020; 12:10181-10198. [PMID: 33116873 PMCID: PMC7575067 DOI: 10.2147/cmar.s276022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
Long noncoding (lnc)RNAs are a group of RNAs with a length greater than 200 nt that do not encode a protein but play an essential role in regulating the expression of target genes in normal biological contexts as well as pathologic processes including tumorigenesis. The lncRNA metastasis-associated lung adenocarcinoma transcript (MALAT)-1 has been widely studied in cancer. In this review, we describe the known functions of MALAT-1; its mechanisms of action; and associated signaling pathways and their clinical significance in different cancers. In most malignancies, including lung, colorectal, thyroid, and other cancers, MALAT-1 functions as an oncogene and is upregulated in tumors and tumor cell lines. MALAT-1 has a distinct mechanism of action in each cancer type and is thus at the center of large gene regulatory networks. Dysregulation of MALAT-1 affects cellular processes such as alternative splicing, epithelial–mesenchymal transition, apoptosis, and autophagy, which ultimately results in the abnormal cell proliferation, invasion, and migration that characterize cancers. In other malignancies, such as glioma and endometrial carcinoma, MALAT-1 functions as a tumor suppressor and thus forms additional regulatory networks. The current evidence indicates that MALAT-1 and its associated signaling pathways can serve as diagnostic or prognostic biomarker or therapeutic target in the treatment of many cancers.
Collapse
Affiliation(s)
- Shijian Fu
- The First Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yanhong Wang
- Department of Laboratory Medicine, Yuebei People's Hospital of Shaoguan, The Affiliated Hospital of Shantou University, Shaoguan 512025, People's Republic of China
| | - Hang Li
- The First Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Leilei Chen
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing 100029, People's Republic of China
| | - Quanzhong Liu
- Department of Medical Genetics, Harbin Medical University, Harbin 150081, People's Republic of China
| |
Collapse
|
4
|
Lin J, Liu Z, Liao S, Li E, Wu X, Zeng W. Elevation of long non-coding RNA GAS5 and knockdown of microRNA-21 up-regulate RECK expression to enhance esophageal squamous cell carcinoma cell radio-sensitivity after radiotherapy. Genomics 2019; 112:2173-2185. [PMID: 31866421 DOI: 10.1016/j.ygeno.2019.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Lately, lncRNAs have been proposed to function in the radio-sensitivity of tumor cells, yet the role of lncRNA GAS5 in that of esophageal squamous cell carcinoma (ESCC) has scarcely been studied. This study aims to examine GAS5's effects on ESCC cell radio-sensitivity. METHODS GAS5, miR-21 and RECK expression in radiation-sensitive and radiation-resistant ESCC tissues, and TE-1 and TE-1-R cells was determined. TE-1 and TE-1-R cells were treated with pcDNA-GAS5 or miR-21 inhibitors to figure out their roles in ESCC cell proliferation, radio-sensitivity, and apoptosis via gain- and loss-of-function experiments. RESULTS We found underexpressed GAS5 and RECK, and overexpressed miR-21 in ESCC. GAS5 elevation and miR-21 inhibition reduced viability and the colony formation ability, and enhanced the apoptosis of ESCC cells under radiation. CONCLUSION Our study reveals that GAS5 elevation up-regulates RECK expression by down-regulating miR-21 to increase ESCC cell apoptosis after radiation therapy, thus enhancing cell radio-sensitivity.
Collapse
Affiliation(s)
- Jing Lin
- Department of Oncology, The First Affiliated Hospital of Shantou Univresity Medical College, Shantou 515041, China.
| | - Zewa Liu
- Department of Oncology, The First Affiliated Hospital of Shantou Univresity Medical College, Shantou 515041, China
| | - Shasha Liao
- Department of Oncology, Shantou Longhu people's Hospital, Shantou 515041, Guangdong, China
| | - E Li
- Department of Oncology, Shantou Longhu people's Hospital, Shantou 515041, Guangdong, China
| | - Xiaohua Wu
- Department of Oncology, Shantou Longhu people's Hospital, Shantou 515041, Guangdong, China
| | - Wanting Zeng
- Division of Medical University College, London WCIE 6BT, United Kingdom
| |
Collapse
|
5
|
Hua Q, Gu X, Chen X, Song W, Wang A, Chu J. IL-8 is involved in radiation therapy resistance of esophageal squamous cell carcinoma via regulation of PCNA. Arch Biochem Biophys 2019; 676:108158. [DOI: 10.1016/j.abb.2019.108158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/04/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
|
6
|
Jadideslam G, Ansarin K, Sakhinia E, Babaloo Z, Abhari A, Ghahremanzadeh K, Khalili M, Radmehr R, Kabbazi A. Diagnostic biomarker and therapeutic target applications of miR-326 in cancers: A systematic review. J Cell Physiol 2019; 234:21560-21574. [PMID: 31069801 DOI: 10.1002/jcp.28782] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are endogenous mediators of RNA interference and have key roles in the modulation of gene expression under healthy, inflamed, stimulated, carcinogenic, or other cells, and tissues of a pathological state. Many studies have proved the association between miRNAs and cancer. The role of miR-326 as a tumor suppressor miRNA in much human cancer confirmed. We will explain the history and the role of miRNAs changes, especially miR-326 in cancers and other pathological conditions. Attuned with these facts, this review highlights recent preclinical and clinical research performed on miRNAs as novel promising diagnostic biomarkers of patients at early stages, prediction of prognosis, and monitoring of the patients in response to treatment. All related publications retrieved from the PubMed database, with keywords such as epigenetic, miRNA, microRNA, miR-326, cancer, diagnostic biomarker, and therapeutic target similar terms from 1899 to 2018 with limitations in the English language. Recently, researchers have focused on the impacts of miRNAs and their association in inflammatory, autoinflammatory, and cancerous conditions. Recent studies have suggested a major pathogenic role in cancers and autoinflammatory diseases. Investigations have explained the role of miRNAs in cancers, autoimmunity, and autoinflammatory diseases, and so on. The miRNA-326 expression has an important role in cancer conditions and other diseases.
Collapse
Affiliation(s)
- Golamreza Jadideslam
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Internal Medicine, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Department of Internal Medicine, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine and Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Department of Immunology Medicine Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Division of Clinical Biochemistry, Department of Biochemistry and Clinical Laboratory, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Ghahremanzadeh
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohamadreza Khalili
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Rahman Radmehr
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Alireza Kabbazi
- Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Zhang Y, Chen Y, You F, Li W, Lang Z, Zou Z. Prognostic and clinicopathological significance of Cks1 in cancer: Evidence from a meta-analysis. J Cell Physiol 2019; 234:13423-13430. [PMID: 30605238 DOI: 10.1002/jcp.28021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/30/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Cyclin-dependent kinase subunit 1 (Cks1), as a highly conserved regulatory protein, has pleiotropic roles in cell cycle progression. As research progresses, increasingly more statistics show that Cks1 may be involved in the occurrence, development, and prognosis of a variety of tumors but the conclusions remain controversial. In addition, there has been no meta-analysis demonstrating the correlation between Cks1 and cancer. Therefore, this meta-analysis was performed to determine the prognostic and clinicopathological significance of Cks1 in various cancers. METHODS Systematic computer literature retrieval was conducted on the Web of Science, Embase, PubMed, CNKI, and Wanfang databases. Stata SE12.0 software was used in the quantitative meta-analysis. The hazard ratio (HR) and relative risk (RR) were pooled to assess the relationship between Cks1 expression and overall survival (OS), disease-free survival (DFS), and clinicopathological parameters. RESULTS Nineteen studies were included, totaling 2,224 participants. High expression of Cks1 was significantly correlated with worse OS (HR, 2.62; 95% confidence interval [CI], 2.18-3.14; p < 0.001) and poorer DFS (HR, 2.73; 95% CI, 1.83-4.08; p < 0.001). In addition, high expression of Cks1 was related to lymph node metastasis (RR, 1.59; 95% CI, 1.22-2.07; p = 0.001) and advanced T stage (RR, 1.14; 95% CI, 1.04-1.25; p = 0.005). CONCLUSIONS High Cks1 expression predicted poorer prognosis and worse clinicopathological parameters in various cancers. Increased Cks1 could be a significant prognostic biomarker for poor survival in patients with various cancers.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P. R. China.,Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yuting Chen
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P. R. China.,Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Fan You
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P. R. China.,Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Wang Li
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P. R. China.,Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Zhiquan Lang
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P. R. China.,Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Zhenhong Zou
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
8
|
Brożyna AA, Aplin A, Cohen C, Carlson G, Page AJ, Murphy M, Slominski AT, Carlson JA. CKS1 expression in melanocytic nevi and melanoma. Oncotarget 2018; 9:4173-4187. [PMID: 29423113 PMCID: PMC5790530 DOI: 10.18632/oncotarget.23648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/16/2017] [Indexed: 12/22/2022] Open
Abstract
Cyclin-dependent kinase subunit 1 (Cks1) regulates the degradation of p27, an important G1-S inhibitor, which is up regulated by MAPK pathway activation. In this study, we sought to determine whether Cks1 expression is increased in melanocytic tumors and correlates with outcome and/or other clinicopathologic prognostic markers. Cks1 expression was assessed by immunohistochemistry in 298 melanocytic lesions. The frequency and intensity of cytoplasmic and nuclear expression was scored as a labeling index and correlated with clinico-pathological data. Nuclear Cks1 protein was found in 63% of melanocytic nevi, 89% primary and 90% metastatic melanomas with mean labeling index of 7 ± 16, 19 ± 20, and 30 ± 29, respectively. While cytoplasmic Cks1 was found in 41% of melanocytic nevi, 84% primary and 95% metastatic melanomas with mean labeling index of 18 ± 34, 35 ± 34, and 52 ± 34, accordingly. Histologic stepwise model of tumor progression, defined as progression from benign nevi to primary melanomas, to melanoma metastases, revealed a significant increase in nuclear and cytoplasmic Cks1 expression with tumor progression. Nuclear and cytoplasmic Cks1 expression correlated with the presence of ulceration, increased mitotic rate, Breslow depth, Clark level, tumor infiltrating lymphocytes and gender. However, other well-known prognostic factors (age, anatomic site, and regression) did not correlate with any type of Cks1 expression. Similarly, increasing nuclear expression of Cks1 significantly correlated with worse overall survival. Thus, Cks1 expression appears to play a role in the progression of melanoma, where high levels of expression are associated with poor outcome. Cytoplasmic expression of Cks1 might represent high turnover of protein via the ubiquination/proteosome pathway.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland
| | - Andrew Aplin
- Department of Cancer Biology, BLSB 524, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cynthia Cohen
- Winship Cancer Institute, Emory University Hospital, Atlanta, GA 30322, USA
| | - Grant Carlson
- Winship Cancer Institute, Emory University Hospital, Atlanta, GA 30322, USA
| | - Andrew Joseph Page
- Pancreas, Liver, and Cancer Surgery, Piedmont Healthcare, Atlanta, GA 30309, USA
| | - Michael Murphy
- Department of Dermatology, UConn Health, Farmington, CT 06030, USA
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J Andrew Carlson
- Department of Pathology and Laboratory Medicine, Albany Medical College MC-81, Albany, NY 12208, USA
| |
Collapse
|
9
|
Li Z, Zhou Y, Tu B, Bu Y, Liu A, Kong J. Long noncoding RNA MALAT1 affects the efficacy of radiotherapy for esophageal squamous cell carcinoma by regulating Cks1 expression. J Oral Pathol Med 2017; 46:583-590. [PMID: 27935117 DOI: 10.1111/jop.12538] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been well studied in the progression of many malignancies. However, its association with the radioresistance of tumors has not been well understood yet. This study tried to explore the role of MALAT1 in regulating the radiosensitivity of esophageal cancer (EC), especially esophageal squamous cell carcinoma (ESCC), involving its regulation on Cks1 expression. METHODS KYSE150 cells were subcutaneously inoculated into nude mice to establish ESCC xenografts. Real-time PCR and Western blot analysis were performed to detect the expression of MALAT1 and Cks1 in irradiated xenografts and cells. Functional analysis was performed in both EC9706 and KYSE150 cells via the transfection of corresponding plasmids or small interfering RNAs (siRNAs). Irradiation-induced damage was examined by the detection of cell viability and apoptosis using MTT and TUNEL assays, respectively. RESULTS Both MALAT1 and Cks1 were downregulated in irradiated xenografts and cells. Cks1FER1L4 showed significant downregulation. Overexpression of MALAT1 inhibited irradiation-induced decrease in cell viability, increase in apoptosis, and downregulation of Cks1. Cks1 expression was also downregulated by MALAT1 siRNA, while Cks1 siRNA strongly recovered MALAT1-induced radioresistance in vitro. Moreover, better tumor growth, accompanied by Cks1 upregulation, was observed in KYSE150 xenografts with MALAT1 overexpression, especially under radiation treatment. CONCLUSION MALAT1 acted as one positive regulator of the radioresistance of ESCC, at least partly due to its promotion on Cks1 expression. Furthermore, MALAT1-targeted therapies showed great potential in enhancing the radiotherapeutic effect on ESCC.
Collapse
Affiliation(s)
- Zhijun Li
- Department of Radiation Oncology, Inner Mongolia Autonomous Region Peoples Hospital, Hohhot, China
| | - Yang Zhou
- Department of Radiation Oncology, Inner Mongolia Autonomous Region Peoples Hospital, Hohhot, China
| | - Bo Tu
- Department of Radiation Oncology, Inner Mongolia Autonomous Region Peoples Hospital, Hohhot, China
| | - Yu Bu
- Department of Radiation Oncology, Inner Mongolia Autonomous Region Peoples Hospital, Hohhot, China
| | - Aqiu Liu
- Department of Radiation Oncology, Inner Mongolia Autonomous Region Peoples Hospital, Hohhot, China
| | - Jianmin Kong
- Department of Radiation Oncology, Inner Mongolia Autonomous Region Peoples Hospital, Hohhot, China
| |
Collapse
|
10
|
Xu L, Fan S, Zhao J, Zhou P, Chu S, Luo J, Wen Q, Chen L, Wen S, Wang L, Shi L. Increased expression of Cks1 protein is associated with lymph node metastasis and poor prognosis in nasopharyngeal carcinoma. Diagn Pathol 2017; 12:2. [PMID: 28061788 PMCID: PMC5219755 DOI: 10.1186/s13000-016-0589-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Background The Cks1 protein is an essential factor in regulating cell cycle by mediating the ubiquitination of CDK inhibitor p27kip1. It has been reported that aberrant expression of Cks1 and p27kip1 proteins was found in various tumors and related to initiation and progression of carcinomas. However, the potential roles which Cks1 and p27KIP1 proteins play in NPC remain unclear. This study aims to examine the expression status of Cks1 and p27kip1 and their possible prognostic significance in NPC. Methods Paraffin-embedded specimens with NPC (n = 168) and non-tumor nasopharyngeal tissues (n = 49) were analyzed by IHC. Results Expression of Cks1 increased in NPC tissues compared with non-tumor nasopharyngeal tissues (P < 0.05), whereas p27kip1 protein frequently expressed in non-tumor nasopharyngeal tissues compared with NPC tissues (P < 0.05). There was a significant reverse correlation between Cks1 and p27kip1 protein expression in NPC (r = −0.189, P < 0.05).In addition, Kaplan-Meier survival curve showed that there was a significant tendency of shorter overall survival (OS) in NPC patients with Cks1 positive expression compared to negative ones, especially in patients with lymph node metastasis (P < 0.001, respectively). But there was no significance between p27kip1 expression and survival viability of NPC patients. Multivariate Cox regression analysis further identified increased expression of Cks1 was the independent poor prognostic factor for NPC (p = 0.13). Conclusion Our research found expression of Cks1 increased and was inverse to the expression of p27KIP1. High expression of Cks1 was significantly associated with lymph node metastasis and survival status in NPC. In addition, the abnormally high level of Cks1 protein was proved to be an independent poor prognostic factor in NPC. These results may provide novel clue for NPC therapy method. Electronic supplementary material The online version of this article (doi:10.1186/s13000-016-0589-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lina Xu
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China
| | - Jin Zhao
- Department of Clinical Laboratory, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Peng Zhou
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China
| | - Shuzhou Chu
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China
| | - Lingjiao Chen
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China
| | - Sailan Wen
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China
| | - Li Wang
- Department of Chest Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Pathology, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410000, China.
| |
Collapse
|
11
|
Zhao H, Gu X. Silencing of insulin-like growth factor-1 receptor enhances the radiation sensitivity of human esophageal squamous cell carcinoma in vitro and in vivo. World J Surg Oncol 2014; 12:325. [PMID: 25363593 PMCID: PMC4232704 DOI: 10.1186/1477-7819-12-325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/20/2014] [Indexed: 01/18/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a prevalent fatal cancer worldwide, and the number of deaths due to this disease is increasing. Due to ESCC resistance to chemotherapy and radiation treatment, new therapies are urgently needed for the improvement of ESCC patient clinical outcomes. Methods Eca-109 and TE-1 cells were transfected with 100 nM IGF-1r siRNA, and a combination of IGF-1r siRNA and radiation therapy was tested in vitro and in vivo. The effects of IGF-1r siRNA were determined through Western blotting and flow cytometry experiments. Results After radiotherapy, the number of IGF-1r siRNA-transfected Eca-109 cells decreased by approximately 67.3%, and a 78.9% reduction was observed in the transfected TE-1 cells. In addition, the Eca-109 and TE-1 cells that were irradiated following IGF-1r knockdown contained 16.2% and 20.3% apoptotic cells, respectively. Conclusions The results of the current study suggest that IGF-1r knockdown may enhance the radiation sensitivity of ESCC and increase the therapeutic effects of radiation both in vitro and in vivo. These results provide strong evidence that the targeted application of siRNA will enable the development of new therapeutic strategies for the clinical treatment of ESCC patients.
Collapse
Affiliation(s)
| | - Xiaomeng Gu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Wenhua Western Road 107, Jinan 250012 Shandong Province, China.
| |
Collapse
|
12
|
Wu S, Wang X, Chen JX, Chen Y. Predictive factors for the sensitivity of radiotherapy and prognosis of esophageal squamous cell carcinoma. Int J Radiat Biol 2014; 90:407-13. [PMID: 24576011 DOI: 10.3109/09553002.2014.894649] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To identify predictive biomarkers for radiosensitization and prognosis of esophageal squamous cell carcinoma (ESCC). MATERIALS AND METHODS A total of 150 advanced stage ESCC patients were treated with preoperative radiotherapy. The protein levels of Dicer 1, DNA methyltransferase 1 (Dnmt1), and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and the mRNA levels of Dicer 1, Dnmt1, and let-7b microRNA (miRNA) were measured in ESCC tumor tissues before and after radiotherapy. Global DNA methylation was measured and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed. RESULTS Negative Dicer 1, Dnmt1, and DNA-PKcs protein expression were observed in 72%, 67.3%, and 50.7% of ESCC patients, respectively. Primary Dicer 1 and Dnmt1 expression positively correlated with radiation sensitization and longer survival of ESCC patients, while increased Dicer 1 and Dnmt1 expression after radiation correlated with increased apoptosis in residual tumor tissues. Dicer 1 and Dnmt1 expression correlated with let-7b miRNA expression and global DNA methylation levels, respectively. In contrast, positive DNA-PKcs expression negatively correlated with radiation-induced pathological reactions, and increased DNA-PKcs expression correlated with increased apoptosis after radiation. CONCLUSION Global DNA hypomethylation and low miRNA expression are involved in the sensitization of ESCC to radiotherapy and prognosis of patients with ESCC.
Collapse
|
13
|
Lee SW, Lin CY, Tian YF, Sun DP, Lin LC, Chen LT, Hsing CH, Huang CT, Hsu HP, Huang HY, Wu LC, Li CF, Shiue YL. Overexpression of CDC28 protein kinase regulatory subunit 1B confers an independent prognostic factor in nasopharyngeal carcinoma. APMIS 2013; 122:206-14. [PMID: 23879533 DOI: 10.1111/apm.12136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/15/2013] [Indexed: 12/28/2022]
Abstract
Data mining on public domain identified that CDC28 protein kinase regulatory subunit 1B (CKS1B) transcript was highly expressed in nasopharyngeal carcinoma (NPC). The expression of CKS1B protein and its clinicopathological associations in patients with NPC were further evaluated. Immunoexpression of CKS1B was retrospectively assessed in biopsies of 124 consecutive NPC patients without initial distant metastasis and treated with consistent guidelines. The correlations between CKS1B immunoexpression levels and clinicopathological features, as well as patient survivals, were analyzed. High CKS1B expression (49.2%) was correlated with the 7th American Joint Committee on Cancer (AJCC) stage (p = 0.014). In multivariate analyses, high CKS1B expression emerged as an independent prognostic factor for worse disease-specific survival (p < 0.001), metastasis-free survival (p < 0.001), and local recurrence-free survival (p = 0.001). High expression of CKS1B is common and associated with adverse prognostic factors and might confer tumor aggressiveness through dysregulation of the cyclin-dependent protein kinase (intrinsic regulatory activity) during cell cycle progression.
Collapse
Affiliation(s)
- Sung-Wei Lee
- Department of Radiation Oncology, Chi-Mei Medical Center, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Khattar V, Thottassery JV. Cks1: Structure, Emerging Roles and Implications in Multiple Cancers. ACTA ACUST UNITED AC 2013; 4:1341-1354. [PMID: 24563807 PMCID: PMC3930463 DOI: 10.4236/jct.2013.48159] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Deregulation of the cell cycle results in loss of normal control mechanisms that prevent aberrant cell proliferation and cancer progression. Regulation of the cell cycle is a highly complex process with many layers of control. One of these mechanisms involves timely degradation of CDK inhibitors (CKIs) like p27Kip1 by the ubiquitin proteasomal system (UPS). Cks1 is a 9 kDa protein which is frequently overexpressed in different tumor subtypes, and has pleiotropic roles in cell cycle progression, many of which remain to be fully characterized. One well characterized molecular role of Cks1 is that of an essential adaptor that regulates p27Kip1 abundance by facilitating its interaction with the SCF-Skp2 E3 ligase which appends ubiquitin to p27Kip1 and targets it for degradation through the UPS. In addition, emerging research has uncovered p27Kip1-independent roles of Cks1 which have provided crucial insights into how it may be involved in cancer progression. We review here the structural features of Cks1 and their functional implications, and also some recently identified Cks1 roles and their involvement in breast and other cancers.
Collapse
Affiliation(s)
| | - Jaideep V Thottassery
- Southern Research Institute, Birmingham, USA ; University of Alabama Comprehensive Cancer Center, Birmingham, USA
| |
Collapse
|