1
|
Pandian S, Ban YS, Shin EK, Thamilarasan SK, Muthusamy M, Oh YJ, An HK, Sohn SI. Introgression of Herbicide-Resistant Gene from Genetically Modified Brassica napus L. to Brassica rapa through Backcrossing. PLANTS (BASEL, SWITZERLAND) 2024; 13:2863. [PMID: 39458810 PMCID: PMC11510986 DOI: 10.3390/plants13202863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Interspecific hybridization between two different Brassicaceae species, namely Brassica rapa ssp. pekinensis (♀) (AA, 2n = 2x = 20) and genetically modified Brassica napus (♂) (AACC, 2n = 4x = 38), was performed to study the transmission of a herbicide resistance gene from a tetraploid to a diploid Brassica species. Initially, four different GM B. napus lines were used for hybridization with B. rapa via hand pollination. Among the F1 hybrids, the cross involving the B. rapa (♀) × GM B. napus (♂) TG#39 line exhibited the highest recorded crossability index of 14.7 ± 5.7. However, subsequent backcross progenies (BC1, BC2, and BC3) displayed notably lower crossability indices. The F1 plants displayed morphological characteristics more aligned with the male parent B. napus, with significant segregation observed in the BC1 generation upon backcrossing with the recurrent parent B. rapa. By the BC2 and BC3 generations, the progeny stabilized, manifesting traits from both parents to varying degrees. Cytogenetic analysis revealed a substantial reduction in chromosome numbers, particularly in backcrossing progenies. BC1 plants typically exhibited 21-25 chromosomes, while BC2 progenies showed 21-22 chromosomes, and by the BC3 generation, stability was achieved with an average of 20 chromosomes. SSR marker analysis confirmed the progressive reduction of C-genome regions, retaining minimal C-genome-specific bands throughout successive backcrossing. Despite the extensive elimination of C-genome-specific genomic regions, the glyphosate resistance gene from the male parent B. napus was introgressed into BC3 progenies, suggesting that the glyphosate resistance gene located and introgressed in A-chromosome/genome regions of the Brassica plants.
Collapse
Affiliation(s)
- Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (S.P.); (Y.-S.B.); (E.-K.S.); (S.K.T.); (M.M.); (H.-K.A.)
| | - Young-Sun Ban
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (S.P.); (Y.-S.B.); (E.-K.S.); (S.K.T.); (M.M.); (H.-K.A.)
| | - Eun-Kyoung Shin
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (S.P.); (Y.-S.B.); (E.-K.S.); (S.K.T.); (M.M.); (H.-K.A.)
| | - Senthil Kumar Thamilarasan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (S.P.); (Y.-S.B.); (E.-K.S.); (S.K.T.); (M.M.); (H.-K.A.)
| | - Muthusamy Muthusamy
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (S.P.); (Y.-S.B.); (E.-K.S.); (S.K.T.); (M.M.); (H.-K.A.)
| | - Young-Ju Oh
- Institute for Future Environmental Ecology Co., Ltd., Jeonju 54883, Republic of Korea;
| | - Ho-Keun An
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (S.P.); (Y.-S.B.); (E.-K.S.); (S.K.T.); (M.M.); (H.-K.A.)
| | - Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (S.P.); (Y.-S.B.); (E.-K.S.); (S.K.T.); (M.M.); (H.-K.A.)
| |
Collapse
|
2
|
Ali M, Polgári D, Sepsi A, Kontra L, Dalmadi Á, Havelda Z, Sági L, Kis A. Rapid and cost-effective molecular karyotyping in wheat, barley, and their cross-progeny by chromosome-specific multiplex PCR. PLANT METHODS 2024; 20:37. [PMID: 38444026 PMCID: PMC10913579 DOI: 10.1186/s13007-024-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Interspecific hybridisation is a powerful tool for increasing genetic diversity in plant breeding programmes. Hexaploid wheat (Triticum aestivum, 2n = 42) × barley (Hordeum vulgare, 2n = 14) intergeneric hybrids can contribute to the transfer of agronomically useful traits by creating chromosome addition or translocation lines as well as full hybrids. Information on the karyotype of hybrid progenies possessing various combinations of wheat and barley chromosomes is thus essential for the subsequent breeding steps. Since the standard technique of chromosome in situ hybridisation is labour-intensive and requires specific skills. a routine, cost-efficient, and technically less demanding approach is beneficial both for research and breeding. RESULTS We developed a Multiplex Polymerase Chain Reaction (MPCR) method to identify individual wheat and barley chromosomes. Chromosome-specific primer pairs were designed based on the whole genome sequences of 'Chinese Spring' wheat and 'Golden Promise' barley as reference cultivars. A pool of potential primers was generated by applying a 20-nucleotide sliding window with consecutive one-nucleotide shifts on the reference genomes. After filtering for optimal primer properties and defined amplicon sizes to produce an ordered ladder-like pattern, the primer pool was manually curated and sorted into four MPCR primer sets for the wheat A, B, and D sub-genomes, and for the barley genome. The designed MPCR primer sets showed high chromosome specificity in silico for the genome sequences of all 18 wheat and barley cultivars tested. The MPCR primers proved experimentally also chromosome-specific for the reference cultivars as well as for 13 additional wheat and four barley genotypes. Analyses of 16 wheat × barley F1 hybrid plants demonstrated that the MPCR primer sets enable the fast and one-step detection of all wheat and barley chromosomes. Finally, the established genotyping system was fully corroborated with the standard genomic in situ hybridisation (GISH) technique. CONCLUSIONS Wheat and barley chromosome-specific MPCR offers a fast, labour-friendly, and versatile alternative to molecular cytogenetic detection of individual chromosomes. This method is also suitable for the high-throughput analysis of distinct (sub)genomes, and, in contrast to GISH, can be performed with any tissue type. The designed primer sets proved to be highly chromosome-specific over a wide range of wheat and barley genotypes as well as in wheat × barley hybrids. The described primer design strategy can be extended to many species with precise genome sequence information.
Collapse
Affiliation(s)
- Mohammad Ali
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary
| | - Dávid Polgári
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Centre for Agricultural Research, Martonvásár, 2462, Hungary
| | - Adél Sepsi
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Levente Kontra
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary
- Institute of Experimental Medicine, Bioinformatics Core Facility, Hungarian Research Network, Budapest, 1083, Hungary
| | - Ágnes Dalmadi
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary
| | - Zoltán Havelda
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary
| | - László Sági
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary.
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Centre for Agricultural Research, Martonvásár, 2462, Hungary.
| | - András Kis
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary.
| |
Collapse
|
3
|
Lin Z, Jin K, Franklin-Tong N. Peptides: Opening the door. MOLECULAR PLANT 2024; 17:8-10. [PMID: 38173276 DOI: 10.1016/j.molp.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 01/05/2024]
Affiliation(s)
- Zongcheng Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Ke Jin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Noni Franklin-Tong
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Sugi N, Maruyama D. Exploring Novel Polytubey Reproduction Pathways Utilizing Cumulative Genetic Tools. PLANT & CELL PHYSIOLOGY 2023; 64:454-460. [PMID: 36943745 DOI: 10.1093/pcp/pcad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
In the anthers and ovaries of flowers, pollen grains and embryo sacs are produced with uniform cell compositions. This stable gametogenesis enables elaborate interactions between male and female gametophytes after pollination, forming the highly successful sexual reproduction system in flowering plants. As most ovules are fertilized with a single pollen tube, the resulting genome set in the embryo and endosperm is determined in a single pattern by independent fertilization of the egg cell and central cell by two sperm cells. However, if ovules receive four sperm cells from two pollen tubes, the expected options for genome sets in the developing seeds would more than double. In wild-type Arabidopsis thaliana plants, around 5% of ovules receive two pollen tubes. Recent studies have elucidated the abnormal fertilization in supernumerary pollen tubes and sperm cells related to polytubey, polyspermy, heterofertilization and fertilization recovery. Analyses of model plants have begun to uncover the mechanisms underlying this new pollen tube biology. Here, we review unusual fertilization phenomena and propose several breeding applications for flowering plants. These arguments contribute to the remodeling of plant reproduction, a challenging concept that alters typical plant fertilization by utilizing the current genetic toolbox.
Collapse
Affiliation(s)
- Naoya Sugi
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813 Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813 Japan
| |
Collapse
|
5
|
Tonosaki K, Fujimoto R, Dennis ES, Raboy V, Osabe K. Will epigenetics be a key player in crop breeding? FRONTIERS IN PLANT SCIENCE 2022; 13:958350. [PMID: 36247549 PMCID: PMC9562705 DOI: 10.3389/fpls.2022.958350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
If food and feed production are to keep up with world demand in the face of climate change, continued progress in understanding and utilizing both genetic and epigenetic sources of crop variation is necessary. Progress in plant breeding has traditionally been thought to be due to selection for spontaneous DNA sequence mutations that impart desirable phenotypes. These spontaneous mutations can expand phenotypic diversity, from which breeders can select agronomically useful traits. However, it has become clear that phenotypic diversity can be generated even when the genome sequence is unaltered. Epigenetic gene regulation is a mechanism by which genome expression is regulated without altering the DNA sequence. With the development of high throughput DNA sequencers, it has become possible to analyze the epigenetic state of the whole genome, which is termed the epigenome. These techniques enable us to identify spontaneous epigenetic mutations (epimutations) with high throughput and identify the epimutations that lead to increased phenotypic diversity. These epimutations can create new phenotypes and the causative epimutations can be inherited over generations. There is evidence of selected agronomic traits being conditioned by heritable epimutations, and breeders may have historically selected for epiallele-conditioned agronomic traits. These results imply that not only DNA sequence diversity, but the diversity of epigenetic states can contribute to increased phenotypic diversity. However, since the modes of induction and transmission of epialleles and their stability differ from that of genetic alleles, the importance of inheritance as classically defined also differs. For example, there may be a difference between the types of epigenetic inheritance important to crop breeding and crop production. The former may depend more on longer-term inheritance whereas the latter may simply take advantage of shorter-term phenomena. With the advances in our understanding of epigenetics, epigenetics may bring new perspectives for crop improvement, such as the use of epigenetic variation or epigenome editing in breeding. In this review, we will introduce the role of epigenetic variation in plant breeding, largely focusing on DNA methylation, and conclude by asking to what extent new knowledge of epigenetics in crop breeding has led to documented cases of its successful use.
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Elizabeth S. Dennis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Victor Raboy
- Independent Researcher Portland, Portland, OR, United States
| | - Kenji Osabe
- Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Sohn SI, Thamilarasan SK, Pandian S, Oh YJ, Kang HJ, Shin EK. Characteristics and Fitness Analysis through Interspecific Hybrid Progenies of Transgenic Brassica napus and B. rapa L. ssp. Int J Mol Sci 2022; 23:ijms231810512. [PMID: 36142426 PMCID: PMC9506035 DOI: 10.3390/ijms231810512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Interspecific hybridization between transgenic crops and their wild relatives is a major concern for transgene dispersal in the environment. Under controlled conditions, artificial hand pollination experiments were performed in order to assess the hybridization potential and the fitness of interspecific hybrids between Brassica rapa and genetically modified (GM) Brassica napus. Initially, six subspecies of B. rapa were hybridized with GM B. napus through hand pollination. In the resulting F1 hybrids, the combination of B. rapa ssp. narinosa (♀) × GM B. napus (♂) had the highest crossability index (16.9 ± 2.6). However, the F1 selfing progenies of B. rapa ssp. rapa (♀) × GM B. napus were found to be more effective in producing viable future generations with the highest crossability index (1.6 ± 0.69) compared to other subspecies. Consequently, they were used for the generation of F2 and F3 progenies. The 18 different morphological characteristics among the parental cross-combinations and F1 hybrid progenies were measured and visualized through hierarchical clustering. Different generations were found to be grouped based on their different morphological characteristics. The chromosome numbers among the interspecific hybrids ranged from 2n = 29 to 2n = 40. Furthermore, the SSR markers revealed the presence of genomic portions in the hybrids in comparison with their parental lines. There is a high possibility of transgene flow between GM B. napus and B. rapa. The study concluded that the interspecific hybrids between B. napus and B. rapa can be viable and can actively hybridize up to F3 generations and more. This suggests that the GM B. napus can disperse the transgene into B. rapa, and that it can pass through for several generations by hand pollination in a greenhouse environment.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
- Correspondence: ; Tel.: +82-063-238-4712
| | - Senthil Kumar Thamilarasan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Young-Ju Oh
- Institute for Future Environment Ecology Co., Ltd., Jeonju 54883, Korea
| | - Hyeon-Jung Kang
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Eun-Kyoung Shin
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
7
|
Buteme R, Nakajiri M, Kucel N, Kabod PN, Sseremba G, Kizito EB. Intraspecific crossability and compatibility within Solanum aethiopicum. Heliyon 2021; 7:e07645. [PMID: 34386622 PMCID: PMC8346643 DOI: 10.1016/j.heliyon.2021.e07645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/09/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
Understanding hybridization barriers is relevant for germplasm conservation and utilization. The prezygotic barriers to hybridization include floral morphological differences like pistil and stamen length, pollen characteristics and pollen-pistil interactions. This study sought to elucidate the reproductive biology of Solanum aethiopicum; its mating systems and compatibility barriers. Eight genotypes of Solanum aethiopicum were examined for differences in floral morphology, phenology and cross compatibility in a full diallel mating design, with assessment of fruit set, seed set and seed viability. In-vivo pollen tube growth was observed for failed crosses at 24, 48 and 72 h after pollination. All genotypes had heterostyly flowers, with predominantly small white petals. Incompatibility was observed in five out of 39 combinations. All selfed genotypes displayed compatibility implying the genotypes are self-compatible. Pollen–pistil incompatibility, which was exhibited in four out of the five failed cross combinations, occurred on the stigma, upper style and lower style, a phenomenon typical in Solanaceae. Solanum aethiopicum is self-compatible and majorly self-pollinating but has features that support cross-pollination.
Collapse
Affiliation(s)
- Ruth Buteme
- Department of Agricultural and Biological Sciences, P.O.Box 4, Uganda Christian University, Mukono, Uganda
| | - Mary Nakajiri
- Department of Agricultural and Biological Sciences, P.O.Box 4, Uganda Christian University, Mukono, Uganda
| | - Newton Kucel
- Department of Agricultural and Biological Sciences, P.O.Box 4, Uganda Christian University, Mukono, Uganda
| | - Pamela Nahamya Kabod
- Department of Agricultural and Biological Sciences, P.O.Box 4, Uganda Christian University, Mukono, Uganda
| | - Godfrey Sseremba
- National Agricultural Research Organization-NACORRI, P. O. Box 185, Kituza, Mukono, Uganda
| | - Elizabeth Balyejusa Kizito
- Department of Agricultural and Biological Sciences, P.O.Box 4, Uganda Christian University, Mukono, Uganda
| |
Collapse
|
8
|
Lv Z, Li Z, Wang M, Zhao F, Zhang W, Li C, Gong L, Zhang Y, Mason AS, Liu B. Conservation and trans-regulation of histone modification in the A and B subgenomes of polyploid wheat during domestication and ploidy transition. BMC Biol 2021; 19:42. [PMID: 33750361 PMCID: PMC7944620 DOI: 10.1186/s12915-021-00985-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polyploidy has played a prominent role in the evolution of plants and many other eukaryotic lineages. However, how polyploid genomes adapt to the abrupt presence of two or more sets of chromosomes via genome regulation remains poorly understood. Here, we analyzed genome-wide histone modification and gene expression profiles in relation to domestication and ploidy transition in the A and B subgenomes of polyploid wheat. RESULTS We found that epigenetic modification patterns by two typical euchromatin histone markers, H3K4me3 and H3K27me3, for the great majority of homoeologous triad genes in A and B subgenomes were highly conserved between wild and domesticated tetraploid wheats and remained stable in the process of ploidy transitions from hexaploid to extracted tetraploid and then back to resynthesized hexaploid. However, a subset of genes was differentially modified during tetraploid and hexaploid wheat domestication and in response to ploidy transitions, and these genes were enriched for particular gene ontology (GO) terms. The extracted tetraploid wheat manifested higher overall histone modification levels than its hexaploid donor, and which were reversible and restored to normal levels in the resynthesized hexaploid. Further, while H3K4me3 marks were distally distributed along each chromosome and significantly correlated with subgenome expression as expected, H3K27me3 marks showed only a weak distal bias and did not show a significant correlation with gene expression. CONCLUSIONS Our results reveal overall high stability of histone modification patterns in the A and B subgenomes of polyploid wheat during domestication and in the process of ploidy transitions. However, modification levels of a subset of functionally relevant genes in the A and B genomes were trans-regulated by the D genome in hexaploid wheat.
Collapse
Affiliation(s)
- Zhenling Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Department of Plant Breeding, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiyue Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yijng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
- Department of Plant Breeding, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
9
|
Mehraj H, Kawanabe T, Shimizu M, Miyaji N, Akter A, Dennis ES, Fujimoto R. In Arabidopsis thaliana Heterosis Level Varies among Individuals in an F 1 Hybrid Population. PLANTS 2020; 9:plants9040414. [PMID: 32230994 PMCID: PMC7238264 DOI: 10.3390/plants9040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 11/28/2022]
Abstract
Heterosis or hybrid vigour is a phenomenon in which hybrid progeny exhibit superior yield and biomass to parental lines and has been used to breed F1 hybrid cultivars in many crops. A similar level of heterosis in all F1 individuals is expected as they are genetically identical. However, we found variation in rosette size in individual F1 plants from a cross between C24 and Columbia-0 accessions of Arabidopsis thaliana. Big-sized F1 plants had 26.1% larger leaf area in the first and second leaves than medium-sized F1 plants at 14 days after sowing in spite of the identical genetic background. We identified differentially expressed genes between big- and medium-sized F1 plants by microarray; genes involved in the category of stress response were overrepresented. We made transgenic plants overexpressing 21 genes, which were differentially expressed between the two size classes, and some lines had increased plant size at 14 or 21 days after sowing but not at all time points during development. Change of expression levels in stress-responsive genes among individual F1 plants could generate the variation in plant size of individual F1 plants in A. thaliana.
Collapse
Affiliation(s)
- Hasan Mehraj
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan; (H.M.); (N.M.); (A.A.)
| | - Takahiro Kawanabe
- School of Agriculture, Tokai University, Toroku, Higashi-ku, Kumamoto 862-8652, Japan
- Correspondence: (T.K.); (R.F.)
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Narita, Kitakami, Iwate 024-0003, Japan;
| | - Naomi Miyaji
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan; (H.M.); (N.M.); (A.A.)
| | - Ayasha Akter
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan; (H.M.); (N.M.); (A.A.)
- Department of Horticulture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Elizabeth S. Dennis
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia;
- University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan; (H.M.); (N.M.); (A.A.)
- Correspondence: (T.K.); (R.F.)
| |
Collapse
|
10
|
Khakimova AG, Gubareva NK, Koshkin VА, Mitrofanova OP. Genetic diversity and breeding value of synthetic hexaploid wheat introduced into the VIR collection. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- A. G. Khakimova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - N. K. Gubareva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - V. А. Koshkin
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - O. P. Mitrofanova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| |
Collapse
|
11
|
He D, Lou XY, He SL, Lei YK, Lv BV, Wang Z, Zheng YB, Liu YP. Isobaric tags for relative and absolute quantitation-based quantitative proteomics analysis provides novel insights into the mechanism of cross-incompatibility between tree peony and herbaceous peony. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:417-427. [PMID: 30940329 DOI: 10.1071/fp18163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Interspecific hybridisation is the main method for improvement and breeding of tree peony (Paeonia ostii T.Hong & J.X.Zhang), but cross-incompatibility as the major factor restricting the rapid development of interspecific hybridisation. To better understand the molecular mechanisms involved in cross-incompatibility between tree peony (Paeonia ostii cv. Fengdanbai) and herbaceous peony (Paeonia lactiflora Pall. cv. Fenyunu), a quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) technology was performed on the stigma 24h after pollination. Of the 2900 proteins whose levels were quantitated, 685 proteins were differentially expressed in the stigma after hybrid pollination, in contrast to self-pollination. Functional annotation analysis showed that dysregulated proteins involved in RNA degradation, the Ca signalling pathway, the phosphatidylinositol signalling system and the mitogen-activated protein kinase (MAPK) signalling pathway may have made contributions to cross-incompatibility. The downregulated expression of enolase, DnaK (Heat Shock Proteins, HSP70), GroEL (Heat Shock Proteins, HSP60), calmodulin and glyoxalase I, and the upregulated expression of adenine nucleotide translocator indicated that the energy synthesis required by pollen tube growth, the signal pathway and the metabolic pathway related to the growth polarity of the pollen tube were blocked after hybrid pollination. Eight genes were selected to confirm their expression by quantitative real-time PCR. Compared with the STRING database, a protein-protein interaction network of the chosen proteins was constructed. These results provide fundamental and important information for research into the molecular mechanisms of cross-incompatibility in peony and should facilitate interspecific hybridisation in agricultural practice.
Collapse
Affiliation(s)
- Dan He
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China; and Henan Institute of Science and Technology, Postdoctor Researche Base, Xinxiang 453000, Henan, China
| | - Xue-Yuan Lou
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Song-Lin He
- Henan Institute of Science and Technology, Xinxiang 453000, Henan, China; and Corresponding author.
| | - Ya-Kai Lei
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Bo-Va Lv
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Zheng Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yun-Bing Zheng
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yi-Ping Liu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China
| |
Collapse
|
12
|
Effect of Hybridization on Somatic Mutations and Genomic Rearrangements in Plants. Int J Mol Sci 2018; 19:ijms19123758. [PMID: 30486351 PMCID: PMC6320998 DOI: 10.3390/ijms19123758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022] Open
Abstract
Hybridization has been routinely practiced in agriculture to enhance the crop yield. Principally, it can cause hybrid vigor where hybrid plants display increased size, biomass, fertility, and resistance to diseases, when compared to their parents. During hybridization, hybrid offspring receive a genomic shock due to mixing of distant parental genomes, which triggers a myriad of genomic rearrangements, e.g., transpositions, genome size changes, chromosomal rearrangements, and other effects on the chromatin. Recently, it has been reported that, besides genomic rearrangements, hybridization can also alter the somatic mutation rates in plants. In this review, we provide in-depth insights about hybridization triggered genomic rearrangements and somatic mutations in plants.
Collapse
|
13
|
Fujimoto R, Uezono K, Ishikura S, Osabe K, Peacock WJ, Dennis ES. Recent research on the mechanism of heterosis is important for crop and vegetable breeding systems. BREEDING SCIENCE 2018; 68:145-158. [PMID: 29875598 PMCID: PMC5982191 DOI: 10.1270/jsbbs.17155] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/29/2018] [Indexed: 05/18/2023]
Abstract
Heterosis or hybrid vigor is a phenomenon where hybrid progeny have superior performance compared to their parental inbred lines. This is important in the use of F1 hybrid cultivars in many crops and vegetables. However, the molecular mechanism of heterosis is not clearly understood. Gene interactions between the two genomes such as dominance, overdominance, and epistasis have been suggested to explain the increased biomass and yield. Genetic analyses of F1 hybrids in maize, rice, and canola have defined a large number of quantitative trait loci, which may contribute to heterosis. Recent molecular analyses of transcriptomes together with reference to the epigenome of the parents and hybrids have begun to uncover new facts about the generation of heterosis. These include the identification of gene expression changes in hybrids, which may be important for heterosis, the role of epigenetic processes in heterosis, and the development of stable high yielding lines.
Collapse
Affiliation(s)
- Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University,
Rokkodai, Nada-ku, Kobe, Hyogo 657-8501,
Japan
- Corresponding author (e-mail: )
| | - Kosuke Uezono
- Graduate School of Agricultural Science, Kobe University,
Rokkodai, Nada-ku, Kobe, Hyogo 657-8501,
Japan
| | - Sonoko Ishikura
- Graduate School of Agricultural Science, Kobe University,
Rokkodai, Nada-ku, Kobe, Hyogo 657-8501,
Japan
| | - Kenji Osabe
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University,
Onna-son, Okinawa 904-0495,
Japan
| | - W. James Peacock
- CSIRO Agriculture and Food,
Canberra, ACT 2601,
Australia
- University of Technology, Sydney,
PO Box 123, Broadway, NSW 2007,
Australia
| | - Elizabeth S. Dennis
- CSIRO Agriculture and Food,
Canberra, ACT 2601,
Australia
- University of Technology, Sydney,
PO Box 123, Broadway, NSW 2007,
Australia
| |
Collapse
|