1
|
Nanape AB, Haine HM, Sugimoto K, Kobayashi F, Oono Y, Handa H, Komatsuda T, Kakeda K. Mutations within the miR172 target site of wheat AP2 homoeologs regulate lodicule size and rachis internode length. BREEDING SCIENCE 2023; 73:401-407. [PMID: 38106507 PMCID: PMC10722097 DOI: 10.1270/jsbbs.23019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/10/2023] [Indexed: 12/19/2023]
Abstract
Closed fertilization in flowers, or cleistogamy, reduces the risk of fungal infection in Triticeae crops. In barley (Hordeum vulgare), cleistogamy is determined by a single recessive gene, cly1, which results from a single nucleotide polymorphism within the microRNA172 target site of the Apetala2 (AP2) transcription factor gene. The recessive cly1 allele negatively regulates the development of lodicules, keeping florets closed at anthesis. However, cleistogamy is not evident in hexaploid wheat (Triticum aestivum) cultivars. This study aimed at identifying mutations in wheat AP2 orthologs by ethyl methane sulfonate-induced mutagenesis and high-resolution melt analysis. Although flowers of AP2 mutants induced in the A and D genomes opened at anthesis, their lodicule size was significantly smaller, especially in the direction of depth, than that of wild-type plants. One of the mutants that carried a nucleotide replacement in AP2 from the D genome produced a compact spike caused by a substantial decrease in rachis internode length, analogous to the barley dense spike. Cleistogamous hexaploid wheat might be generated by combining effective mutant alleles of AP2-homoeologous genes.
Collapse
Affiliation(s)
- Agetha Bigie Nanape
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Hlaing Moe Haine
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Kazuhiko Sugimoto
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Fuminori Kobayashi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Youko Oono
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Hirokazu Handa
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Takao Komatsuda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
- Shandong Academy of Agricultural Sciences (SAAS), Crop Research Institute, 202 Gongyebei Road, Licheng District, Jinan, Shandong 250100, China
| | - Katsuyuki Kakeda
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| |
Collapse
|
2
|
Szeliga M, Bakera B, Święcicka M, Tyrka M, Rakoczy-Trojanowska M. Identification of candidate genes responsible for chasmogamy in wheat. BMC Genomics 2023; 24:170. [PMID: 37016302 PMCID: PMC10074802 DOI: 10.1186/s12864-023-09252-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND The flowering biology of wheat plants favours self-pollination which causes obstacles in wheat hybrid breeding. Wheat flowers can be divided into two groups, the first one is characterized by flowering and pollination within closed flowers (cleistogamy), while the second one possesses the ability to open flowers during processes mentioned above (chasmogamy). The swelling of lodicules is involved in the flowering of cereals and among others their morphology, calcium and potassium content differentiate between cleistogamic and non-cleistogamous flowers. A better understanding of the chasmogamy mechanism can lead to the development of tools for selection of plants with the desired outcrossing rate. To learn more, the sequencing of transcriptomes (RNA-Seq) and Representational Difference Analysis products (RDA-Seq) were performed to investigate the global transcriptomes of wheat lodicules in two highly chasmogamous (HCH, Piko and Poezja) and two low chasmogamous (LCH, Euforia and KWS Dacanto) varieties at two developmental stages-pre-flowering and early flowering. RESULTS The differentially expressed genes were enriched in five, main pathways: "metabolism", "organismal systems", "genetic information processing", "cellular processes" and "environmental information processing", respectively. Important genes with opposite patterns of regulation between the HCH and LCH lines have been associated with the lodicule development i.e. expression levels of MADS16 and MADS58 genes may be responsible for quantitative differences in chasmogamy level in wheat. CONCLUSIONS We conclude that the results provide a new insight into lodicules involvement in the wheat flowering process. This study generated important genomic information to support the exploitation of the chasmogamy in wheat hybrid breeding programs.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland.
| | - Beata Bakera
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa Street 1, 02-096, Warsaw, Poland
| | - Magdalena Święcicka
- Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Mirosław Tyrka
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland
| | | |
Collapse
|
3
|
Zhao ZX, Yin XX, Li S, Peng YT, Yan XL, Chen C, Hassan B, Zhou SX, Pu M, Zhao JH, Hu XH, Li GB, Wang H, Zhang JW, Huang YY, Fan J, Li Y, Wang WM. miR167d-ARFs Module Regulates Flower Opening and Stigma Size in Rice. RICE (NEW YORK, N.Y.) 2022; 15:40. [PMID: 35876915 PMCID: PMC9314575 DOI: 10.1186/s12284-022-00587-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Flower opening and stigma exertion are two critical traits for cross-pollination during seed production of hybrid rice (Oryza sativa L.). In this study, we demonstrate that the miR167d-ARFs module regulates stigma size and flower opening that is associated with the elongation of stamen filaments and the cell arrangement of lodicules. The overexpression of miR167d (OX167d) resulted in failed elongation of stamen filaments, increased stigma size, and morphological alteration of lodicule, resulting in cleistogamy. Blocking miR167d by target mimicry also led to a morphological alteration of the individual floral organs, including a reduction in stigma size and alteration of lodicule cell morphology, but did not show the cleistogamous phenotype. In addition, the four target genes of miR167d, namely ARF6, ARF12, ARF17, and ARF25, have overlapping functions in flower opening and stigma size. The loss-of-function of a single ARF gene did not influence the flower opening and stigma size, but arf12 single mutant showed a reduced plant height and aborted apical spikelets. However, mutation in ARF12 together with mutation in either ARF6, ARF17, or ARF25 led to the same defective phenotypes that were observed in OX167d, including the failed elongation of stamen filaments, increased stigma size, and morphological alteration of lodicule. These findings indicate that the appropriate expression of miR167d is crucial and the miR167d-ARFs module plays important roles in the regulation of flower opening and stigma size in rice.
Collapse
Affiliation(s)
- Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Xiao Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sha Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu-Ting Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiu-Lian Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chen Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Beenish Hassan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|