1
|
Dai SF, Zhu XG, Hutang GR, Li JY, Tian JQ, Jiang XH, Zhang D, Gao LZ. Genome Size Variation and Evolution Driven by Transposable Elements in the Genus Oryza. FRONTIERS IN PLANT SCIENCE 2022; 13:921937. [PMID: 35874017 PMCID: PMC9301470 DOI: 10.3389/fpls.2022.921937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/16/2022] [Indexed: 05/08/2023]
Abstract
Genome size variation and evolutionary forces behind have been long pursued in flowering plants. The genus Oryza, consisting of approximately 25 wild species and two cultivated rice, harbors eleven extant genome types, six of which are diploid (AA, BB, CC, EE, FF, and GG) and five of which are tetraploid (BBCC, CCDD, HHJJ, HHKK, and KKLL). To obtain the most comprehensive knowledge of genome size variation in the genus Oryza, we performed flow cytometry experiments and estimated genome sizes of 166 accessions belonging to 16 non-AA genome Oryza species. k-mer analyses were followed to verify the experimental results of the two accessions for each species. Our results showed that genome sizes largely varied fourfold in the genus Oryza, ranging from 279 Mb in Oryza brachyantha (FF) to 1,203 Mb in Oryza ridleyi (HHJJ). There was a 2-fold variation (ranging from 570 to 1,203 Mb) in genome size among the tetraploid species, while the diploid species had 3-fold variation, ranging from 279 Mb in Oryza brachyantha (FF) to 905 Mb in Oryza australiensis (EE). The genome sizes of the tetraploid species were not always two times larger than those of the diploid species, and some diploid species even had larger genome sizes than those of tetraploids. Nevertheless, we found that genome sizes of newly formed allotetraploids (BBCC-) were almost equal to totaling genome sizes of their parental progenitors. Our results showed that the species belonging to the same genome types had similar genome sizes, while genome sizes exhibited a gradually decreased trend during the evolutionary process in the clade with AA, BB, CC, and EE genome types. Comparative genomic analyses further showed that the species with different rice genome types may had experienced dissimilar amplification histories of retrotransposons, resulting in remarkably different genome sizes. On the other hand, the closely related rice species may have experienced similar amplification history. We observed that the contents of transposable elements, long terminal repeats (LTR) retrotransposons, and particularly LTR/Gypsy retrotransposons varied largely but were significantly correlated with genome sizes. Therefore, this study demonstrated that LTR retrotransposons act as an active driver of genome size variation in the genus Oryza.
Collapse
Affiliation(s)
- Shuang-feng Dai
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Xun-ge Zhu
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ge-rang Hutang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jia-yue Li
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Jia-qi Tian
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Xian-hui Jiang
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Dan Zhang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Li-zhi Gao
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Li-zhi Gao,
| |
Collapse
|
2
|
Li W, Zhang Q, Zhu T, Tong Y, Li K, Shi C, Zhang Y, Liu Y, Jiang J, Liu Y, Xia E, Huang H, Zhang L, Zhang D, Shi C, Jiang W, Zhao Y, Mao S, Jiao J, Xu P, Yang L, Gao L. Draft genomes of two outcrossing wild rice, Oryza rufipogon and O. longistaminata, reveal genomic features associated with mating-system evolution. PLANT DIRECT 2020; 4:e00232. [PMID: 32537559 PMCID: PMC7287411 DOI: 10.1002/pld3.232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 05/04/2023]
Abstract
Oryza rufipogon and O. longistaminata are important wild relatives of cultivated rice, harboring a promising source of novel genes for rice breeding programs. Here, we present de novo assembled draft genomes and annotation of O. rufipogon and O. longistaminata. Our analysis reveals a considerable number of lineage-specific gene families associated with the self-incompatibility (SI) and formation of reproductive separation. We show how lineage-specific expansion or contraction of gene families with functional enrichment of the recognition of pollen, thus enlightening their reproductive diversification. We documented a large number of lineage-specific gene families enriched in salt stress, antifungal response, and disease resistance. Our comparative analysis further shows a genome-wide expansion of genes encoding NBS-LRR proteins in these two outcrossing wild species in contrast to six other selfing rice species. Conserved noncoding sequences (CNSs) in the two wild rice genomes rapidly evolve relative to selfing rice species, resulting in the reduction of genomic variation owing to shifts of mating systems. We find that numerous genes related to these rapidly evolving CNSs are enriched in reproductive structure development, flower development, and postembryonic development, which may associate with SI in O. rufipogon and O. longistaminata.
Collapse
Affiliation(s)
- Wei Li
- Institution of Genomics and BioinformaticsSouth China Agricultural UniversityGuangzhouChina
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - Qun‐Jie Zhang
- Institution of Genomics and BioinformaticsSouth China Agricultural UniversityGuangzhouChina
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - Ting Zhu
- Institution of Genomics and BioinformaticsSouth China Agricultural UniversityGuangzhouChina
- College of Life ScienceLiaoning Normal UniversityDalianChina
| | - Yan Tong
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - Kui Li
- Institution of Genomics and BioinformaticsSouth China Agricultural UniversityGuangzhouChina
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - Cong Shi
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Yun Zhang
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - Yun‐Long Liu
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - Jian‐Jun Jiang
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - Yuan Liu
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - En‐Hua Xia
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - Hui Huang
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - Li‐Ping Zhang
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - Dan Zhang
- Institution of Genomics and BioinformaticsSouth China Agricultural UniversityGuangzhouChina
| | - Chao Shi
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - Wen‐Kai Jiang
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - You‐Jie Zhao
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - Shu‐Yan Mao
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - Jun‐ying Jiao
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - Ping‐Zhen Xu
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - Li‐Li Yang
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| | - Li‐Zhi Gao
- Institution of Genomics and BioinformaticsSouth China Agricultural UniversityGuangzhouChina
- Plant Germplasm and Genomics CenterGermplasm Bank of Wild Species in Southwestern China Kunming Institute of Botany Chinese Academy of SciencesKunmingChina
| |
Collapse
|
3
|
Yamamoto N, Garcia R, Suzuki T, Solis CA, Tada Y, Venuprasad R, Kohli A. Comparative whole genome re-sequencing analysis in upland New Rice for Africa: insights into the breeding history and respective genome compositions. RICE (NEW YORK, N.Y.) 2018; 11:33. [PMID: 29766351 PMCID: PMC5953909 DOI: 10.1186/s12284-018-0224-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 04/30/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Increasing rice demand is one of the consequences of the steadily improving socio-economic status of the African countries. New Rice for Africa (NERICA), which are interspecific hybrids between Asian and African rice varieties, are one of successful breeding products utilizing biodiversity across the two different rice crop species. Upland NERICA varieties (NU) exhibit agronomic traits of value for the harsh eco-geography, including shorter duration, higher yield and stress tolerance, compared to local African varieties. However, the molecular basis of the traits in NU varieties is largely unknown. RESULTS Whole genome re-sequencing was performed of four NU lines (3, 4, 5, and 7) and for the parental Oryza sativa WAB56-104 and Oryza glaberrima CG14. The k-mer analysis predicted large genomes for the four NU lines, most likely inherited from WAB56-104. Approximately 3.1, 0.10, and 0.40 million single nucleotide polymorphisms, multi nucleotide polymorphisms, and short insertions/deletions were mined between the parental lines, respectively. Integrated analysis with another four NU lines (1, 2, 8, and 9) showed that the ratios of the donor CG14 allelic sites in the NU lines ranged from 1.3 to 9.8%. High resolution graphical genotype indicated genome-level similarities and common genetic events during the breeding process: five xyloglucan fucosyltransferase from O. glaberrima were introgressed in common. Segregation of genic segments revealed potential causal genes for some agronomic traits including grain shattering, awnness, susceptibility to bacterial leaf bright, and salt tolerance. Analysis of unmapped sequences against the reference cultivar Nipponbare indicated existence of unique genes for pathogen and abiotic stress resistance in the NU varieties. CONCLUSIONS The results provide understanding of NU genomes for rice improvement for Africa reinforcing local capacity for food security and insights into molecular events in breeding of interspecific hybrid crops.
Collapse
Affiliation(s)
- Naoki Yamamoto
- International Rice Research Institute, Los Baños, Laguna, Philippines.
| | - Richard Garcia
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Tomohiro Suzuki
- Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, Japan
| | | | - Yuichi Tada
- Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, Japan
| | | | - Ajay Kohli
- International Rice Research Institute, Los Baños, Laguna, Philippines.
| |
Collapse
|
4
|
Rapid diversification of five Oryza AA genomes associated with rice adaptation. Proc Natl Acad Sci U S A 2014; 111:E4954-62. [PMID: 25368197 DOI: 10.1073/pnas.1418307111] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm.
Collapse
|
5
|
Wu Z, Ge S. The whole chloroplast genome of wild rice (Oryza australiensis). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:1062-3. [PMID: 24960559 DOI: 10.3109/19401736.2014.928868] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The whole chloroplast genome of wild rice (Oryza australiensis) is characterized in this study. The genome size is 135,224 bp, exhibiting a typical circular structure including a pair of 25,776 bp inverted repeats (IRa,b) separated by a large single-copy region (LSC) of 82,212 bp and a small single-copy region (SSC) of 12,470 bp. The overall GC content of the genome is 38.95%. 110 unique genes were annotated, including 76 protein-coding genes, 4 ribosomal RNA genes, and 30t RNA genes. Among these, 18 are duplicated in the inverted repeat regions, 13 genes contain one intron, and 2 genes (rps12 and ycf3) have two introns.
Collapse
Affiliation(s)
- Zhiqiang Wu
- a State Key Laboratory of Systematic and Evolutionary Botany , Institute of Botany, Chinese Academy of Sciences , Beijing , China
| | - Song Ge
- a State Key Laboratory of Systematic and Evolutionary Botany , Institute of Botany, Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
6
|
Niroula RK, Pucciariello C, Ho VT, Novi G, Fukao T, Perata P. SUB1A-dependent and -independent mechanisms are involved in the flooding tolerance of wild rice species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:282-293. [PMID: 22709342 DOI: 10.1111/j.1365-313x.2012.05078.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Crop tolerance to flooding is an important agronomic trait. Although rice (Oryza sativa) is considered a flood-tolerant crop, only limited cultivars display tolerance to prolonged submergence, which is largely attributed to the presence of the SUB1A gene. Wild Oryza species have the potential to unveil adaptive mechanisms and shed light on the basis of submergence tolerance traits. In this study, we screened 109 Oryza genotypes belonging to different rice genome groups for flooding tolerance. Oryza nivara and Oryza rufipogon accessions, belonging to the A-genome group, together with Oryza sativa, showed a wide range of submergence responses, and the tolerance-related SUB1A-1 and the intolerance-related SUB1A-2 alleles were found in tolerant and sensitive accessions, respectively. Flooding-tolerant accessions of Oryza rhizomatis and Oryza eichingeri, belonging to the C-genome group, were also identified. Interestingly, SUB1A was absent in these species, which possess a SUB1 orthologue with high similarity to O. sativa SUB1C. The expression patterns of submergence-induced genes in these rice genotypes indicated limited induction of anaerobic genes, with classical anaerobic proteins poorly induced in O. rhizomatis under submergence. The results indicated that SUB1A-1 is not essential to confer submergence tolerance in the wild rice genotypes belonging to the C-genome group, which show instead a SUB1A-independent response to submergence.
Collapse
Affiliation(s)
- Raj Kumar Niroula
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Ai B, Wang ZS, Ge S. GENOME SIZE IS NOT CORRELATED WITH EFFECTIVE POPULATION SIZE IN THEORYZASPECIES. Evolution 2012; 66:3302-10. [DOI: 10.1111/j.1558-5646.2012.01674.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Ceccarelli M, Sarri V, Caceres M, Cionini P. Intraspecific genotypic diversity in plants. Genome 2011; 54:701-9. [DOI: 10.1139/g11-039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Variations in the nuclear DNA, mainly as a result of quantitative modulations of DNA repeats belonging to different sequence families of satellite DNA and to the activity of transposable elements, have been assessed within several angiosperm species. These variations alter the amount and organization of the DNA and therefore the genotype, rather than the genome proper. They take place on an evolutionary time scale as the result of selection processes after the occurrence of uncontrolled events in the genome or may be due to direct responses of plant genomes to environmental stimuli that occur under plant-level control within a short developmental period of a single generation. These DNA changes are correlated to changes in the developmental dynamics and phenotypic characteristics of the plants, and the capability to carry out genotypic variation is an evolutionary trait that allows plant species to adapt to different environmental conditions, as well as to the variability of conditions in a given environment. The link between developmental and environmental stimuli and repetitive DNA that elicits the intraspecific diversity of plant genotypes may provide models of evolutionary change that extend beyond the conventional view of evolution by allelic substitution and take into account epigenetic effects of the genome structure.
Collapse
Affiliation(s)
- M. Ceccarelli
- Dipartimento di Biologia Cellulare e Ambientale, Sezione di Biologia Cellulare e Molecolare, Università di Perugia, Via Elce di Sotto, 06123 Perugia, Italy
| | - V. Sarri
- Dipartimento di Biologia Cellulare e Ambientale, Sezione di Biologia Cellulare e Molecolare, Università di Perugia, Via Elce di Sotto, 06123 Perugia, Italy
| | - M.E. Caceres
- Dipartimento di Biologia Cellulare e Ambientale, Sezione di Biologia Cellulare e Molecolare, Università di Perugia, Via Elce di Sotto, 06123 Perugia, Italy
| | - P.G. Cionini
- Dipartimento di Biologia Cellulare e Ambientale, Sezione di Biologia Cellulare e Molecolare, Università di Perugia, Via Elce di Sotto, 06123 Perugia, Italy
| |
Collapse
|
9
|
Fang SA, Eu TI, Chung MC. Isolation and characterization of genome-specific markers in Oryza species with the BB genome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:300-308. [PMID: 21763541 DOI: 10.1016/j.plantsci.2011.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 05/18/2011] [Accepted: 06/06/2011] [Indexed: 05/31/2023]
Abstract
Wild species of rice with many valuable agronomic traits are an important genetic resource for improving cultivated rice by wide hybridization. Genome- or chromosome-specific markers are useful for monitoring genome introgression and for identifying genome components. From 47 random amplified polymorphic DNAs (RAPDs) of nine Oryza species, three bands (Ogla225, Opun225, and Opun246) were found to be genome specific with distinct sizes. Their specificities were further characterized by Southern hybridization, sequence analysis, and fluorescent in situ hybridization (FISH). Ogla225 is specifically amplified from the AA genome but homologous sequences were conserved among Oryza species. Opun225 occurs at a low copy number although is specifically amplified from Oryza punctata. There are estimated 2000-3300 repeats of Opun246 in each haploid genome of Oryza species with the BB or BBCC genome. Clusters of Opun246 repeats were detected at heterochromatic regions on almost all chromosomes of the BB genomes by FISH. Opun246 may be a useful marker for monitoring the introgression of BB genome or for identifying the conserved components of BB genome in genetic resource. The results from this study and our previous study both indicate that numerous unique repeats play role in the differentiation of the BB genome from other Oryza genomes.
Collapse
Affiliation(s)
- Shao-An Fang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
10
|
Zhang M, Wu YH, Lee MK, Liu YH, Rong Y, Santos TS, Wu C, Xie F, Nelson RL, Zhang HB. Numbers of genes in the NBS and RLK families vary by more than four-fold within a plant species and are regulated by multiple factors. Nucleic Acids Res 2010; 38:6513-25. [PMID: 20542917 PMCID: PMC2965241 DOI: 10.1093/nar/gkq524] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many genes exist in the form of families; however, little is known about their size variation, evolution and biology. Here, we present the size variation and evolution of the nucleotide-binding site (NBS)-encoding gene family and receptor-like kinase (RLK) gene family in Oryza, Glycine and Gossypium. The sizes of both families vary by numeral fold, not only among species, surprisingly, also within a species. The size variations of the gene families are shown to correlate with each other, indicating their interactions, and driven by natural selection, artificial selection and genome size variation, but likely not by polyploidization. The numbers of genes in the families in a polyploid species are similar to those of one of its diploid donors, suggesting that polyploidization plays little roles in the expansion of the gene families and that organisms tend not to maintain their ‘surplus’ genes in the course of evolution. Furthermore, it is found that the size variations of both gene families are associated with organisms’ phylogeny, suggesting their roles in speciation and evolution. Since both selection and speciation act on organism’s morphological, physiological and biological variation, our results indicate that the variation of gene family size provides a source of genetic variation and evolution.
Collapse
Affiliation(s)
- Meiping Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ammiraju JSS, Lu F, Sanyal A, Yu Y, Song X, Jiang N, Pontaroli AC, Rambo T, Currie J, Collura K, Talag J, Fan C, Goicoechea JL, Zuccolo A, Chen J, Bennetzen JL, Chen M, Jackson S, Wing RA. Dynamic evolution of oryza genomes is revealed by comparative genomic analysis of a genus-wide vertical data set. THE PLANT CELL 2008; 20:3191-209. [PMID: 19098269 PMCID: PMC2630430 DOI: 10.1105/tpc.108.063727] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/01/2008] [Accepted: 12/06/2008] [Indexed: 05/18/2023]
Abstract
Oryza (23 species; 10 genome types) contains the world's most important food crop - rice. Although the rice genome serves as an essential tool for biological research, little is known about the evolution of the other Oryza genome types. They contain a historical record of genomic changes that led to diversification of this genus around the world as well as an untapped reservoir of agriculturally important traits. To investigate the evolution of the collective Oryza genome, we sequenced and compared nine orthologous genomic regions encompassing the Adh1-Adh2 genes (from six diploid genome types) with the rice reference sequence. Our analysis revealed the architectural complexities and dynamic evolution of this region that have occurred over the past approximately 15 million years. Of the 46 intact genes and four pseudogenes in the japonica genome, 38 (76%) fell into eight multigene families. Analysis of the evolutionary history of each family revealed independent and lineage-specific gain and loss of gene family members as frequent causes of synteny disruption. Transposable elements were shown to mediate massive replacement of intergenic space (>95%), gene disruption, and gene/gene fragment movement. Three cases of long-range structural variation (inversions/deletions) spanning several hundred kilobases were identified that contributed significantly to genome diversification.
Collapse
Affiliation(s)
- Jetty S S Ammiraju
- Arizona Genomics Institute, Department of Plant Sciences, BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|