1
|
Kawahara Y, Tanaka J, Takayama K, Wako T, Ogino A, Yamashita S, Taniguchi F. Chromosome-Scale Genome Assembly and Characterization of Top-Quality Japanese Green Tea Cultivar 'Seimei'. PLANT & CELL PHYSIOLOGY 2024; 65:1271-1284. [PMID: 38807462 PMCID: PMC11369818 DOI: 10.1093/pcp/pcae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Japanese green tea, an essential beverage in Japanese culture, is characterized by the initial steaming of freshly harvested leaves during production. This process efficiently inactivates endogenous enzymes such as polyphenol oxidases, resulting in the production of sencha, gyokuro and matcha that preserves the vibrant green color of young leaves. Although genome sequences of several tea cultivars and germplasms have been published, no reference genome sequences are available for Japanese green tea cultivars. Here, we constructed a reference genome sequence of the cultivar 'Seimei', which is used to produce high-quality Japanese green tea. Using the PacBio HiFi and Hi-C technologies for chromosome-scale genome assembly, we obtained 15 chromosome sequences with a total genome size of 3.1 Gb and an N50 of 214.9 Mb. By analyzing the genomic diversity of 23 Japanese tea cultivars and lines, including the leading green tea cultivars 'Yabukita' and 'Saemidori', it was revealed that several candidate genes could be related to the characteristics of Japanese green tea. The reference genome of 'Seimei' and information on genomic diversity of Japanese green tea cultivars should provide crucial information for effective breeding of such cultivars in the future.
Collapse
Affiliation(s)
| | - Junichi Tanaka
- Institute of Crop Science, NARO, Tsukuba, 305-8518 Japan
| | - Kazuhiro Takayama
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, 305-8605 Japan
| | - Toshiyuki Wako
- Institute of Crop Science, NARO, Tsukuba, 305-8518 Japan
| | - Akiko Ogino
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, 305-8605 Japan
| | - Shuya Yamashita
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, 305-8605 Japan
| | - Fumiya Taniguchi
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, 305-8605 Japan
| |
Collapse
|
2
|
Li JW, Li H, Liu ZW, Wang YX, Chen Y, Yang N, Hu ZH, Li T, Zhuang J. Molecular markers in tea plant (Camellia sinensis): Applications to evolution, genetic identification, and molecular breeding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107704. [PMID: 37086694 DOI: 10.1016/j.plaphy.2023.107704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Tea plants have a long cultivation history in the world, and the beverage (tea) made from its leaves is well known in the world. Due to the characteristics of self-incompatibility, long-term natural and artificial hybridization, tea plants have a very complex genetic background, which make the classification of tea plants unclear. Molecular marker, one type of genetic markers, has the advantages of stable inheritance, large amount of information, and high reliability. The development of molecular marker has facilitated the understanding of complex tea germplasm resources. So far, molecular markers had played important roles in the study of the origin and evolution, the preservation and identification of tea germplasms, and the excellent cultivars breeding of tea plants. However, the information is scattered, making it difficult to understand the advance of molecular markers in tea plants. In this paper, we summarized the development process and types of molecular markers in tea plants. In addition, the application advance of these molecular markers in tea plants was reviewed. Perspectives of molecular markers in tea plants were also systematically provided and discussed. The elaboration of molecular markers in this paper should help us to renew understanding of its application in tea plants.
Collapse
Affiliation(s)
- Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yi Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tong Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
3
|
Yan H, Qi H, Li Y, Wu Y, Wang Y, Chen J, Yu J. Assessment of the Genetic Relationship and Population Structure in Oil-Tea Camellia Species Using Simple Sequence Repeat (SSR) Markers. Genes (Basel) 2022; 13:2162. [PMID: 36421835 PMCID: PMC9691144 DOI: 10.3390/genes13112162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 08/27/2023] Open
Abstract
Oil-tea camellia trees, the collective term for a class of economically valuable woody oil crops in China, have attracted extensive attention because of their rich nutritional and pharmaceutical value. This study aimed to analyze the genetic relationship and genetic diversity of oil-tea camellia species using polymorphic SSR markers. One-hundred and forty samples of five species were tested for genetic diversity using twenty-four SSR markers. In this study, a total of 385 alleles were identified using 24 SSR markers, and the average number of alleles per locus was 16.0417. The average Shannon's information index (I) was 0.1890, and the percentages of polymorphic loci (P) of oil-tea camellia trees were 7.79-79.48%, indicating that oil-tea camellia trees have low diversity. Analysis of molecular variance (AMOVA) showed that the majority of genetic variation (77%) was within populations, and a small fraction (23%) occurred among populations. Principal coordinate analysis (PCoA) results indicated that the first two principal axes explained 7.30% (PC1) and 6.68% (PC2) of the total variance, respectively. Both UPGMA and PCoA divided the 140 accessions into three groups. Camellia oleifera clustered into one class, Camellia vietnamensis and Camellia gauchowensis clustered into one class, and Camellia crapnelliana and Camellia chekiangoleosa clustered into another class. It could be speculated that the genetic relationship of C. vietnamensis and C. gauchowensis is quite close. SSR markers could reflect the genetic relationship among oil-tea camellia germplasm resources, and the results of this study could provide comprehensive information on the conservation, collection, and breeding of oil-tea camellia germplasms.
Collapse
Affiliation(s)
- Heqin Yan
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
| | - Huasha Qi
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Yang Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
| | - Yougen Wu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Engineering Research Center for the Selection and Breeding of New Tropical Crop Varieties of Ministry of Education, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yong Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jianmiao Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Engineering Research Center for the Selection and Breeding of New Tropical Crop Varieties of Ministry of Education, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jing Yu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Genome Survey and SSR Analysis of Camellia nitidissima Chi (Theaceae). Genet Res (Camb) 2022; 2022:5417970. [PMID: 36407084 PMCID: PMC9646326 DOI: 10.1155/2022/5417970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Camellia nitidissima Chi (CNC), a species of golden Camellia, is well known as "the queen of camellias." It is an ornamental, medicinal, and edible plant grown in China. In this study, we conducted a genome survey sequencing analysis and simple sequence repeat (SSR) identification of CNC using the Illumina sequencing platform. The 21-mer analysis predicted its genome size to be 2,778.82 Mb, with heterozygosity and repetition rates of 1.42% and 65.27%, respectively. The CNC genome sequences were assembled into 9,399,197 scaffolds, covering ∼2,910 Mb and an N50 of 869 base pair. Its genomic characteristics were found to be similar to those of Camellia oleifera. In addition, 1,940,616 SSRs were identified from the genome data, including mono-(61.85%), di-(28.71%), tri-(6.51%), tetra-(1.85%), penta-(0.57%), and hexanucleotide motifs (0.51%). We believe these data will provide a useful foundation for the development of novel molecular markers for CNC as well as for further whole-genome sequencing of CNC.
Collapse
|
5
|
The Diversity of Melia azedarach L. from China Based on Transcriptome-Developed SSR Marker. FORESTS 2022. [DOI: 10.3390/f13071011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Melia azedarach L. is a native tree species that can be used in a comprehensive way and is widely distributed in all provinces south of the Yellow River in China. Genetic diversity analysis of different M. azedarach germplasm sources is an important basic work for the selection, evaluation, and genetic improvement of M. azedarach germplasm resources. In this study, 100 pairs of SSR primers were designed and synthesized based on M. azedarach transcriptome data, and 16 pairs of reliable SSR primers were finally selected. The developed primers were used to analyze the genetic diversity of M. azedarach from 15 sources in 10 provinces in East, Central, and South China. The results showed that the frequency of the M. azedarach transcriptome SSR loci was high, and the distribution density was high. There were 15 sources of M. azedarach genetic diversity at a moderate level, and genetic variation was mainly present within the sources. The present study further enriches the existing SSR marker database of the M. azedarach family and can provide a reference for genetic diversity analysis and molecularly assisted breeding of M. azedarach plants at the genomic level.
Collapse
|
6
|
O'Donnell AJ, Huang R, Barboline JJ, Barkman TJ. Convergent Biochemical Pathways for Xanthine Alkaloid Production in Plants Evolved from Ancestral Enzymes with Different Catalytic Properties. Mol Biol Evol 2021; 38:2704-2714. [PMID: 33662138 PMCID: PMC8233510 DOI: 10.1093/molbev/msab059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Convergent evolution is widespread but the extent to which common ancestral conditions are necessary to facilitate the independent acquisition of similar traits remains unclear. In order to better understand how ancestral biosynthetic catalytic capabilities might lead to convergent evolution of similar modern-day biochemical pathways, we resurrected ancient enzymes of the caffeine synthase (CS) methyltransferases that are responsible for theobromine and caffeine production in flowering plants. Ancestral CS enzymes of Theobroma, Paullinia, and Camellia exhibited similar substrate preferences but these resulted in the formation of different sets of products. From these ancestral enzymes, descendants with similar substrate preference and product formation independently evolved after gene duplication events in Theobroma and Paullinia. Thus, it appears that the convergent modern-day pathways likely originated from ancestral pathways with different inferred flux. Subsequently, the modern-day enzymes originated independently via gene duplication and their convergent catalytic characteristics evolved to partition the multiple ancestral activities by different mutations that occurred in homologous regions of the ancestral proteins. These results show that even when modern-day pathways and recruited genes are similar, the antecedent conditions may be distinctive such that different evolutionary steps are required to generate convergence.
Collapse
Affiliation(s)
- Andrew J O'Donnell
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Ruiqi Huang
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Jessica J Barboline
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Todd J Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| |
Collapse
|
7
|
Nakanishi A, Takeuchi T, Ueno S, Nishimura N, Tomaru N. Spatial variation in bird pollination and its mitigating effects on the genetic diversity of pollen pools accepted by Camellia japonica trees within a population at a landscape level. Heredity (Edinb) 2019; 124:170-181. [PMID: 31485029 DOI: 10.1038/s41437-019-0262-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/03/2023] Open
Abstract
Bird pollination can vary spatially in response to spatial fluctuations in flowering even within plant populations. In this study, we examined the hypothesis that the spatial variation in bird pollination may induce mitigating effects, which maintains or increases genetic diversity of pollen pools at local sites with low flowering densities. To test this hypothesis, we analyzed the landscape-level genetic effects within a population of Camellia japonica on the pollen pools accepted by individuals in two reproductive years by using genotypes at eight microsatellite loci of 1323 seeds from 19 seed parents. Regression analyses using the quadratic models of correlated paternity between pollen pools against spatial distances between the seed-parent pairs revealed not only local pollination but also some amount of long-distance pollen dispersal. The genetic diversity of pollen pools accepted by seed parents tended to be negatively related to the densities of flowering individuals near the seed parents during winter (when the effective pollination of C. japonica is mediated mostly by Zosterops japonica). We show that the low density of flowering individuals may induce the expansion of the foraging areas of Z. japonica and consequently increase the genetic diversity of pollen pools. This spatial variation in bird pollination may induce the mitigating effects on the C. japonica population. The comparisons between the two study years indicate that the overall pattern of bird pollination and the genetic effects described here, including the mitigating effects, may be stable over time.
Collapse
Affiliation(s)
- Atsushi Nakanishi
- Hokkaido Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 7 Hitsujigaoka, Toyohira-ku, Sapporo, 062-8516, Japan
| | - Tomoe Takeuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.,Forestry Department, Saku Regional Development Bureau, Nagano Prefectural Government, 65-1 Atobe, Saku, Nagano, 385-0054, Japan
| | - Saneyoshi Ueno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Naoyuki Nishimura
- Faculty of Social and Information Studies, Gunma University, 4-2 Aramaki-machi, Maebashi, Gunma, 371-8510, Japan
| | - Nobuhiro Tomaru
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
8
|
Ogino A, Taniguchi F, Yoshida K, Matsumoto S, Fukuoka H, Nesumi A. A new DNA marker CafLess-TCS1 for selection of caffeine-less tea plants. BREEDING SCIENCE 2019; 69:393-400. [PMID: 31598071 PMCID: PMC6776138 DOI: 10.1270/jsbbs.18161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/01/2019] [Indexed: 05/07/2023]
Abstract
A clonal line of Camellia taliensis, 'Taliensis-akeme' has a recessive caffeine-less gene. To accelerate breeding of caffeine-less tea cultivars using this gene, DNA markers are indispensable for selecting heterozygotes that do not show a caffeine-less phenotype as parental lines. Therefore, we tried to determine the sequence of the six tea caffeine synthase (TCS) genes to search for polymorphisms and to prepare one of the TCS genes as a selection marker. Six TCS genes and the caffeine-less trait were mapped on the reference linkage map of tea. Strong linkage between the caffeine-less phenotype and TCS1 indicate that it is a promising candidate as a causative gene of the caffeine-less trait. We decided to use a three-nucleotide insertion in TCS1 that can be distinguished by sequencing as a selection marker named 'CafLess-TCS1'. Caffeine-less individuals appeared in the progeny population of caffeine-less heterozygous individuals selected using 'CafLess-TCS1'. These results confirmed that the developed 'CafLess-TCS1' will be an effective selection marker for breeding of caffeine-less tea cultivars.
Collapse
Affiliation(s)
- Akiko Ogino
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO),
87 Seto, Makurazaki, Kagoshima 898-0087,
Japan
- Corresponding author (e-mail: )
| | - Fumiya Taniguchi
- Institute of Fruit Tree and Tea Science, NARO,
2-1 Fujimoto, Tsukuba, Ibaraki 305-8605,
Japan
| | - Katsuyuki Yoshida
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO),
87 Seto, Makurazaki, Kagoshima 898-0087,
Japan
| | - Satoru Matsumoto
- Institute of Vegetable and Floriculture Science, NARO,
360 Kusawa, Ano, Tsu, Mie 514-2392,
Japan
| | - Hiroyuki Fukuoka
- formerly National Institute of Vegetable and Tea Science, NARO,
360 Kusawa, Ano, Tsu, Mie 514-2392,
Japan
| | - Atsushi Nesumi
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO),
87 Seto, Makurazaki, Kagoshima 898-0087,
Japan
| |
Collapse
|
9
|
Li X, Fan Z, Guo H, Ye N, Lyu T, Yang W, Wang J, Wang JT, Wu B, Li J, Yin H. Comparative genomics analysis reveals gene family expansion and changes of expression patterns associated with natural adaptations of flowering time and secondary metabolism in yellow Camellia. Funct Integr Genomics 2018; 18:659-671. [PMID: 29948459 DOI: 10.1007/s10142-018-0617-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/12/2018] [Accepted: 05/31/2018] [Indexed: 11/27/2022]
Abstract
Yellow-flowering species are unique in the genus Camellia not only for their bright yellow pigments but also the health-improving substances in petals. However, little is known regarding the biosynthesis pathways of pigments and secondary metabolites. Here, we performed comparative genomics studies in two yellow-flowered species of the genus Camellia with distinctive flowering periods. We obtained 112,190 and 89,609 unigenes from Camellia nitidissima and Camellia chuongtsoensis, respectively, and identified 9547 gene family clusters shared with various plant species and 3414 single-copy gene families. Global gene expression analysis revealed six comparisons of differentially expressed gene sets in different developmental stages of floral bud. Through the identification of orthologous pairs, conserved and specific differentially expressed genes (DEGs) between species were compared. Functional enrichment analysis suggested that the gibberellin (GA) biosynthesis pathway might be related to the alteration of flowering responses. Furthermore, the expression patterns of secondary metabolism pathway genes were analyzed between yellow- and red-flowered Camellias. We showed that the key enzymes involved in glycosylation of flavonoids displayed differential expression patterns, indicating that the direct glycosylation of flavonols rather than anthocyanins was pivotal to coloration and health-improving metabolites in the yellow Camellia petals. Finally, the gene family analysis of UDP-glycosyltransferases revealed an expansion of group C members in C. nitidissima. Through comparative genomics analysis, we demonstrate that changes of gene expression and gene family members are critical to the variation of natural traits. This work provides valuable insights into the molecular regulation of trait adaptations of floral pigmentation and flowering timing.
Collapse
Affiliation(s)
- Xinlei Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
- Key Laboratory of Forest Genetics and Breeding, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
- Key Laboratory of Forest Genetics and Breeding, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
| | - Haobo Guo
- Colleges of Engineering and Computer Science, SimCenter, University of Tennessee Chattanooga, Chattanooga, TN, 37403, USA
| | - Ning Ye
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, 210037, China
| | - Tao Lyu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
- College of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wen Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
- Key Laboratory of Forest Genetics and Breeding, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
| | - Jie Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
- Key Laboratory of Forest Genetics and Breeding, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
| | - Jia-Tong Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
| | - Bin Wu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
- Key Laboratory of Forest Genetics and Breeding, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
- Key Laboratory of Forest Genetics and Breeding, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China.
- Key Laboratory of Forest Genetics and Breeding, Chinese Academy of Forestry, Fuyang, Zhejiang, 311400, China.
| |
Collapse
|
10
|
Wang F, Zhong X, Wang H, Song A, Chen F, Fang W, Jiang J, Teng N. Investigation of Differences in Fertility among Progenies from Self-Pollinated Chrysanthemum. Int J Mol Sci 2018. [PMID: 29533976 PMCID: PMC5877693 DOI: 10.3390/ijms19030832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Most chrysanthemum cultivars are self-incompatible, so it is very difficult to create pure lines that are important in chrysanthemum breeding and theoretical studies. In our previous study, we obtained a self-compatible chrysanthemum cultivar and its self-pollinated seed set was 56.50%. It was interesting that the seed set of its ten progenies ranged from 0% to 37.23%. Examination of the factors causing the differences in the seed set will lead to an improved understanding of chrysanthemum self-incompatibility, and provide valuable information for creating pure lines. Pollen morphology, pollen germination percentage, pistil receptivity and embryo development were investigated using the in vitro culture method, the paraffin section technique, scanning electron microscopy and transmission electron microscopy. Moreover, RNA sequencing and bioinformatics were applied to analyzing the transcriptomic profiles of mature stigmas and anthers. It was found that the self-pollinated seed set of "Q10-33-1①","Q10-33-1③","Q10-33-1④" and "Q10-33-1⑩" were 37.23%, 26.77%, 7.97% and 0%, respectively. The differences in fertility among four progenies were mainly attributable to differences in pollen germination percentage and pistil receptivity. Failure of the seed set in "Q10-33-1⑩" was possibly due to self-incompatibility. In the transcriptomic files, 22 potential stigma S genes and 8 potential pollen S genes were found out.
Collapse
Affiliation(s)
- Fan Wang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing 210095, China.
| | - Xinghua Zhong
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing 210095, China.
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing 210095, China.
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing 210095, China.
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing 210095, China.
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing 210095, China.
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing 210095, China.
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing 210095, China.
| |
Collapse
|
11
|
Ferraz dos Santos L, Moreira Fregapani R, Falcão LL, Togawa RC, Costa MMDC, Lopes UV, Peres Gramacho K, Alves RM, Micheli F, Marcellino LH. First Microsatellite Markers Developed from Cupuassu ESTs: Application in Diversity Analysis and Cross-Species Transferability to Cacao. PLoS One 2016; 11:e0151074. [PMID: 26949967 PMCID: PMC4780773 DOI: 10.1371/journal.pone.0151074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/23/2016] [Indexed: 01/25/2023] Open
Abstract
The cupuassu tree (Theobroma grandiflorum) (Willd. ex Spreng.) Schum. is a fruitful species from the Amazon with great economical potential, due to the multiple uses of its fruit´s pulp and seeds in the food and cosmetic industries, including the production of cupulate, an alternative to chocolate. In order to support the cupuassu breeding program and to select plants presenting both pulp/seed quality and fungal disease resistance, SSRs from Next Generation Sequencing ESTs were obtained and used in diversity analysis. From 8,330 ESTs, 1,517 contained one or more SSRs (1,899 SSRs identified). The most abundant motifs identified in the EST-SSRs were hepta- and trinucleotides, and they were found with a minimum and maximum of 2 and 19 repeats, respectively. From the 1,517 ESTs containing SSRs, 70 ESTs were selected based on their functional annotation, focusing on pulp and seed quality, as well as resistance to pathogens. The 70 ESTs selected contained 77 SSRs, and among which, 11 were polymorphic in cupuassu genotypes. These EST-SSRs were able to discriminate the cupuassu genotype in relation to resistance/susceptibility to witches’ broom disease, as well as to pulp quality (SST/ATT values). Finally, we showed that these markers were transferable to cacao genotypes, and that genome availability might be used as a predictive tool for polymorphism detection and primer design useful for both Theobroma species. To our knowledge, this is the first report involving EST-SSRs from cupuassu and is also a pioneer in the analysis of marker transferability from cupuassu to cacao. Moreover, these markers might contribute to develop or saturate the cupuassu and cacao genetic maps, respectively.
Collapse
Affiliation(s)
- Lucas Ferraz dos Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, 45662–900 Ilhéus-BA, Brazil
- Embrapa Recursos Genéticos e Biotecnologia, Brasília-DF, 70770–917, Brazil
| | | | - Loeni Ludke Falcão
- Embrapa Recursos Genéticos e Biotecnologia, Brasília-DF, 70770–917, Brazil
| | | | | | | | | | | | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, 45662–900 Ilhéus-BA, Brazil
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- * E-mail:
| | | |
Collapse
|
12
|
Mukhopadhyay M, Mondal TK, Chand PK. Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review. PLANT CELL REPORTS 2016; 35:255-87. [PMID: 26563347 DOI: 10.1007/s00299-015-1884-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 05/28/2023]
Abstract
This article presents a comprehensive review on the success and limitations of biotechnological approaches aimed at genetic improvement of tea with a purpose to explore possibilities to address challenging areas. Tea is a woody perennial tree with a life span of more than 100 years. Conventional breeding of tea is slow and limited primarily to selection which leads to narrowing down of its genetic base. Harnessing the benefits of wild relatives has been negligible due to low cross-compatibility, genetic drag and undesirable alleles for low yield. Additionally, being a recalcitrant species, in vitro propagation of tea is constrained too. Nevertheless, maneuvering with tissue/cell culture techniques, a considerable success has been achieved in the area of micropropagation, somatic embryogenesis as well as genetic transformation. Besides, use of molecular markers, "expressomics" (transcriptomics, proteomics, metabolomics), map-based cloning towards construction of physical maps, generation of expressed sequenced tags (ESTs) have facilitated the identification of QTLs and discovery of genes associated with abiotic or biotic stress tolerance and agronomic traits. Furthermore, the complete genome (or at least gene space) sequence of tea is expected to be accessible in the near future which will strengthen combinational approaches for improvement of tea. This review presents a comprehensive account of the success and limitations of the biotechnological tools and techniques hitherto applied to tea and its wild relatives. Expectedly, this will form a basis for making further advances aimed at genetic improvement of tea in particular and of economically important woody perennials in general.
Collapse
Affiliation(s)
- Mainaak Mukhopadhyay
- Department of Botany, University of Kalyani, Kalyani, 741235, Nadia, West Bengal, India.
| | - Tapan K Mondal
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India.
| | - Pradeep K Chand
- Plant Cell and Tissue Culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India.
| |
Collapse
|
13
|
Heitkam T, Petrasch S, Zakrzewski F, Kögler A, Wenke T, Wanke S, Schmidt T. Next-generation sequencing reveals differentially amplified tandem repeats as a major genome component of Northern Europe’s oldest Camellia japonica. Chromosome Res 2015; 23:791-806. [DOI: 10.1007/s10577-015-9500-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/30/2022]
|
14
|
Ma JQ, Yao MZ, Ma CL, Wang XC, Jin JQ, Wang XM, Chen L. Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis). PLoS One 2014; 9:e93131. [PMID: 24676054 PMCID: PMC3968092 DOI: 10.1371/journal.pone.0093131] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/03/2014] [Indexed: 02/04/2023] Open
Abstract
Catechins are the most important bioactive compounds in tea, and have been demonstrated to possess a wide variety of pharmacological activities. To characterize quantitative trait loci (QTLs) for catechins content in the tender shoots of tea plant, we constructed a moderately saturated genetic map using 406 simple sequence repeat (SSR) markers, based on a pseudo-testcross population of 183 individuals derived from an intraspecific cross of two Camellia sinensis varieties with diverse catechins composition. The map consisted of fifteen linkage groups (LGs), corresponding to the haploid chromosome number of tea plant (2n = 2x = 30). The total map length was 1,143.5 cM, with an average locus spacing of 2.9 cM. A total of 25 QTLs associated with catechins content were identified over two measurement years. Of these, nine stable QTLs were validated across years, and clustered into four main chromosome regions on LG03, LG11, LG12 and LG15. The population variability explained by each QTL was predominantly at moderate-to-high levels and ranged from 2.4% to 71.0%, with an average of 17.7%. The total number of QTL for each trait varied from four to eight, while the total population variability explained by all QTLs for a trait ranged between 38.4% and 79.7%. This is the first report on the identification of QTL for catechins content in tea plant. The results of this study provide a foundation for further cloning and functional characterization of catechin QTLs for utilization in improvement of tea plant.
Collapse
Affiliation(s)
- Jian-Qiang Ma
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, Zhejiang Province, China
| | - Ming-Zhe Yao
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, Zhejiang Province, China
| | - Chun-Lei Ma
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, Zhejiang Province, China
| | - Xin-Chao Wang
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, Zhejiang Province, China
| | - Ji-Qiang Jin
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, Zhejiang Province, China
| | - Xue-Min Wang
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, Zhejiang Province, China
| | - Liang Chen
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
15
|
Fang WP, Meinhardt LW, Tan HW, Zhou L, Mischke S, Zhang D. Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers. HORTICULTURE RESEARCH 2014; 1:14035. [PMID: 26504544 PMCID: PMC4596320 DOI: 10.1038/hortres.2014.35] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 05/04/2023]
Abstract
Apart from water, tea is the world's most widely consumed beverage. Tea is produced in more than 50 countries with an annual production of approximately 4.7 million tons. The market segment for specialty tea has been expanding rapidly owing to increased demand, resulting in higher revenues and profits for tea growers and the industry. Accurate varietal identification is critically important to ensure traceability and authentication of premium tea products, which in turn contribute to on-farm conservation of tea genetic diversity. Using a set of single nucleotide polymorphism (SNP) markers developed from the expressed sequence tag (EST) database of Camilla senensis, we genotyped deoxyribonucleic acid (DNA) samples extracted from a diverse group of tea varieties, including both fresh and processed commercial loose-leaf teas. The validation led to the designation of 60 SNPs that unambiguously identified all 40 tested tea varieties with high statistical rigor (p<0.0001). Varietal authenticity and genetic relationships among the analyzed cultivars were further characterized by ordination and Bayesian clustering analysis. These SNP markers, in combination with a high-throughput genotyping protocol, effectively established and verified specific DNA fingerprints for all tested tea varieties. This method provides a powerful tool for variety authentication and quality control for the tea industry. It is also highly useful for the management of tea genetic resources and breeding, where accurate and efficient genotype identification is essential.
Collapse
Affiliation(s)
- Wan-Ping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Lyndel W Meinhardt
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Hua-Wei Tan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sue Mischke
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| |
Collapse
|
16
|
Abe H, Ueno S, Takahashi T, Tsumura Y, Hasegawa M. Resilient plant-bird interactions in a volcanic island ecosystem: pollination of Japanese Camellia mediated by the Japanese White-eye. PLoS One 2013; 8:e62696. [PMID: 23646136 PMCID: PMC3639980 DOI: 10.1371/journal.pone.0062696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/25/2013] [Indexed: 11/25/2022] Open
Abstract
Observations of interspecies interactions during volcanic activity provide important opportunities to study how organisms respond to environmental devastation. Japanese camellia (Camellia japonica L.) and its main avian pollinator, the Japanese White-eye (Zosterops japonica), offer an excellent example of such an interaction as key members of the biotic community on Miyake-jima, which erupted in 2000 and continues to emit volcanic gases. Both species exhibit higher resistance to volcanic damage than other species. We examined the effects of volcanic activity on this plant–pollinator system by estimating pollen flow and the genetic diversity of the next generation. The results showed that despite a decrease in Camellia flowers, the partitioning of allelic richness among mother-tree pollen pools and seeds decreased while the migration rate of pollen from outside the study plot and the pollen donor diversity within a fruit increased as the index of volcanic damage increased. In areas with low food (flower) density due to volcanic damage, Z. japonica ranged over larger areas to satisfy its energy needs rather than moving to areas with higher food density. Consequently, the genetic diversity of the seeds (the next plant generation) increased with the index of volcanic damage. The results were consistent with previously published data on the movement of Z. japonica based on radio tracking and the genetic diversity of Camellia pollen adhering to pollinators. Overall, our results indicated that compensation mechanisms ensured better pollination after volcanic disturbance.
Collapse
Affiliation(s)
- Harue Abe
- Field Center for Sustainable Agriculture and Forestry, Faculty of Agriculture, Niigata University, 94-2 Koda, Sado, Niigata, Japan.
| | | | | | | | | |
Collapse
|
17
|
Taniguchi F, Furukawa K, Ota-Metoku S, Yamaguchi N, Ujihara T, Kono I, Fukuoka H, Tanaka J. Construction of a high-density reference linkage map of tea (Camellia sinensis). BREEDING SCIENCE 2012; 62:263-73. [PMID: 23226087 PMCID: PMC3501944 DOI: 10.1270/jsbbs.62.263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 05/14/2012] [Indexed: 05/19/2023]
Abstract
A few linkage maps of tea have been constructed using pseudo-testcross theory based on dominant marker systems. However, dominant markers are not suitable as landmark markers across a wide range of materials. Therefore, we developed co-dominant SSR markers from genomic DNA and ESTs and constructed a reference map using these co-dominant markers as landmarks. A population of 54 F(1) clones derived from reciprocal crosses between 'Sayamakaori' and 'Kana-Ck17' was used for the linkage analysis. Maps of both parents were constructed from the F(1) population that was taken for BC(1) population. The order of most of the dominant markers in the parental maps was consistent. We constructed a core map by merging the linkage data for markers that detected polymorphisms in both parents. The core map contains 15 linkage groups, which corresponds to the basic chromosome number of tea. The total length of the core map is 1218 cM. Here, we present the reference map as a central core map sandwiched between the parental maps for each linkage group; the combined maps contain 441 SSRs, 7 CAPS, 2 STS and 674 RAPDs. This newly constructed linkage map can be used as a basic reference linkage map of tea.
Collapse
Affiliation(s)
- Fumiya Taniguchi
- Makurazaki Tea Research Station, NARO Institute of Vegetable and Tea Science, 87 Seto, Makurazaki, Kagoshima 898-0032, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Kazumi Furukawa
- Makurazaki Tea Research Station, NARO Institute of Vegetable and Tea Science, 87 Seto, Makurazaki, Kagoshima 898-0032, Japan
- Present address: Numazu National College of Technology, 3600 Ooka, Numazu, Shizuoka 410-8501, Japan
| | - Sakura Ota-Metoku
- Makurazaki Tea Research Station, NARO Institute of Vegetable and Tea Science, 87 Seto, Makurazaki, Kagoshima 898-0032, Japan
| | - Nobuo Yamaguchi
- Makurazaki Tea Research Station, NARO Institute of Vegetable and Tea Science, 87 Seto, Makurazaki, Kagoshima 898-0032, Japan
- Present address: Marine Biological Laboratory, Graduate School of Science, Hiroshima University, 2445 Mukaishima, Onomichi, Hiroshima 722-0073, Japan
| | - Tomomi Ujihara
- Kanaya Tea Research Station, NARO Institute of Vegetable and Tea Science, 2769 Kanaya, Shimada, Shizuoka 428-8501, Japan
| | - Izumi Kono
- STAFF-Institute, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki 305-0854, Japan
- Present address: Laboratory of Synaptic Plasticity and Connectivity, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Fukuoka
- NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Junichi Tanaka
- Makurazaki Tea Research Station, NARO Institute of Vegetable and Tea Science, 87 Seto, Makurazaki, Kagoshima 898-0032, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
- Present address: NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
- Corresponding author (e-mail: )
| |
Collapse
|