1
|
Ni K, Meng L. Mechanism of PANoptosis in metabolic dysfunction-associated steatotic liver disease. Clin Res Hepatol Gastroenterol 2024; 48:102381. [PMID: 38821484 DOI: 10.1016/j.clinre.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
In recent years, the incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has been steadily rising, emerging as a major chronic liver disease of global concern. The course of MASLD is varied, spanning from MASLD to metabolic dysfunction associated steatohepatitis (MASH). MASH is an important contributor to cirrhosis, which may subsequently lead to hepatocellular carcinoma. It has been found that PANoptosis, an emerging inflammatory programmed cell death (PCD), is involved in the pathogenesis of MASLD and facilitates the development of NASH, eventually resulting in inflammatory fibrosis and hepatocyte death. This paper reviews the latest research progress on PANoptosis and MASLD to understand the mechanism of MASLD and provide new directions for future treatment and drug development.
Collapse
Affiliation(s)
- Keying Ni
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medical), Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou, China
| | - Lina Meng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medical), Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Senavirathna T, Shafaei A, Lareu R, Balmer L. Unlocking the Therapeutic Potential of Ellagic Acid for Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Antioxidants (Basel) 2024; 13:485. [PMID: 38671932 PMCID: PMC11047720 DOI: 10.3390/antiox13040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity is in epidemic proportions in many parts of the world, contributing to increasing rates of non-alcoholic fatty liver disease (NAFLD). NAFLD represents a range of conditions from the initial stage of fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to severe fibrosis, through to hepatocellular carcinoma. There currently exists no treatment for the long-term management of NAFLD/NASH, however, dietary interventions have been investigated for the treatment of NASH, including several polyphenolic compounds. Ellagic acid is one such polyphenolic compound. Nutraceutical food abundant in ellagic acid undergoes initial hydrolysis to free ellagic acid within the stomach and small intestine. The proposed mechanism of action of ellagic acid extends beyond its initial therapeutic potential, as it is further broken down by the gut microbiome into urolithin. Both ellagic acid and urolithin have been found to alleviate oxidative stress, inflammation, and fibrosis, which are associated with NAFLD/NASH. While progress has been made in understanding the pharmacological and biological activity of ellagic acid and its involvement in NAFLD/NASH, it has yet to be fully elucidated. Thus, the aim of this review is to summarise the currently available literature elucidating the therapeutic potential of ellagic acid and its microbial-derived metabolite urolithin in NAFLD/NASH.
Collapse
Affiliation(s)
- Tharani Senavirathna
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia;
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Perth, WA 6027, Australia;
| | - Ricky Lareu
- Curtin Medical School and Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia;
| |
Collapse
|
3
|
Qu H, Zong L, Sang J, Wa Y, Chen D, Huang Y, Chen X, Gu R. Effect of Lactobacillus rhamnosus hsryfm 1301 Fermented Milk on Lipid Metabolism Disorders in High-Fat-Diet Rats. Nutrients 2022; 14:4850. [PMID: 36432537 PMCID: PMC9698387 DOI: 10.3390/nu14224850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
To further explore and improve the mechanism of probiotics to alleviate the disorder of lipid metabolism, transcriptomic and metabolomic with bioinformatic analysis were combined. In the present study, we successfully established a rat model of lipid metabolism disorder using a high-fat diet. Intervention with Lactobacillus rhamnosus hsryfm 1301 fermented milk resulted in a significant reduction in body weight, serum free fatty acid and blood lipid levels (p < 0.05), which predicted that the lipid metabolism disorder was alleviated in rats. Metabolomics and transcriptomics identified a total of 33 significantly different metabolites and 183 significantly different genes screened in the intervention group compared to the model group. Comparative analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations identified a total of 61 pathways in which differential metabolites and genes were jointly involved, with linoleic acid metabolism, glycine, serine and threonine metabolism and glutamatergic synapse in both transcriptome and metabolome being found to be significantly altered (p < 0.05). Lactobacillus rhamnosus hsryfm 1301 fermented milk was able to directly regulate lipid metabolism disorders by regulating the metabolic pathways of linoleic acid metabolism, glycerophospholipid metabolism, fatty acid biosynthesis, alpha-linolenic acid metabolism, fatty acid degradation, glycerolipid metabolism and arachidonic acid metabolism. In addition, we found that Lactobacillus rhamnosus hsryfm 1301 fermented milk indirectly regulates lipid metabolism through regulating amino acid metabolism, the nervous system, the endocrine system and other pathways. Lactobacillus rhamnosus hsryfm 1301 fermented milk could alleviate the disorders of lipid metabolism caused by high-fat diet through multi-target synergy.
Collapse
Affiliation(s)
- Hengxian Qu
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225000, China
| | - Lina Zong
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225000, China
| | - Jian Sang
- Realab Biotechnology Co., Ltd., Beijing 100000, China
| | - Yunchao Wa
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225000, China
| | - Dawei Chen
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225000, China
| | - Yujun Huang
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225000, China
| | - Xia Chen
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225000, China
| | - Ruixia Gu
- College of Food Science and Technology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
4
|
Ma Y, Lee G, Heo SY, Roh YS. Oxidative Stress Is a Key Modulator in the Development of Nonalcoholic Fatty Liver Disease. Antioxidants (Basel) 2021; 11:antiox11010091. [PMID: 35052595 PMCID: PMC8772974 DOI: 10.3390/antiox11010091] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and scientific studies consistently report that NAFLD development can be accelerated by oxidative stress. Oxidative stress can induce the progression of NAFLD to NASH by stimulating Kupffer cells, hepatic stellate cells, and hepatocytes. Therefore, studies are underway to identify the role of antioxidants in the treatment of NAFLD. In this review, we have summarized the origins of reactive oxygen species (ROS) in cells, the relationship between ROS and NAFLD, and have discussed the use of antioxidants as therapeutic agents for NAFLD.
Collapse
Affiliation(s)
- Yuanqiang Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (Y.M.); (G.L.)
| | - Gyurim Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (Y.M.); (G.L.)
| | - Su-Young Heo
- College of Veterinary Medicine, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (S.-Y.H.); (Y.-S.R.)
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (Y.M.); (G.L.)
- Correspondence: (S.-Y.H.); (Y.-S.R.)
| |
Collapse
|
5
|
Kořínková L, Pražienková V, Černá L, Karnošová A, Železná B, Kuneš J, Maletínská L. Pathophysiology of NAFLD and NASH in Experimental Models: The Role of Food Intake Regulating Peptides. Front Endocrinol (Lausanne) 2020; 11:597583. [PMID: 33324348 PMCID: PMC7726422 DOI: 10.3389/fendo.2020.597583] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity, diabetes, insulin resistance, sedentary lifestyle, and Western diet are the key factors underlying non-alcoholic fatty liver disease (NAFLD), one of the most common liver diseases in developed countries. In many cases, NAFLD further progresses to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and to hepatocellular carcinoma. The hepatic lipotoxicity and non-liver factors, such as adipose tissue inflammation and gastrointestinal imbalances were linked to evolution of NAFLD. Nowadays, the degree of adipose tissue inflammation was shown to directly correlate with the severity of NAFLD. Consumption of higher caloric intake is increasingly emerging as a fuel of metabolic inflammation not only in obesity-related disorders but also NAFLD. However, multiple causes of NAFLD are the reason why the mechanisms of NAFLD progression to NASH are still not well understood. In this review, we explore the role of food intake regulating peptides in NAFLD and NASH mouse models. Leptin, an anorexigenic peptide, is involved in hepatic metabolism, and has an effect on NAFLD experimental models. Glucagon-like peptide-1 (GLP-1), another anorexigenic peptide, and GLP-1 receptor agonists (GLP-1R), represent potential therapeutic agents to prevent NAFLD progression to NASH. On the other hand, the deletion of ghrelin, an orexigenic peptide, prevents age-associated hepatic steatosis in mice. Because of the increasing incidence of NAFLD and NASH worldwide, the selection of appropriate animal models is important to clarify aspects of pathogenesis and progression in this field.
Collapse
Affiliation(s)
- L. Kořínková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - V. Pražienková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - L. Černá
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - A. Karnošová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - B. Železná
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - J. Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Kılınç S, Demirbaş T, Atay E, Ceran Ö, Atay Z. Elevated 1-h post-load plasma glucose levels in normal glucose tolerance children with obesity is associated with early carotid atherosclerosis. Obes Res Clin Pract 2020; 14:136-141. [PMID: 32061583 DOI: 10.1016/j.orcp.2020.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 10/25/2022]
Abstract
CONTEXT Evidence suggests that the 1-h post-load plasma glucose (1-h PG) ≥155mg/dL during an oral glucose tolerance test (OGTT) predicts development of type 2 diabetes (T2DM) and associated complications, among adults with normal glucose tolerance (NGT), but relevant data on children is scarce. OBJECTIVES To investigate whether NGT children with obesity whose 1-h PG is ≥155mg/dL have an increased carotid intima-media thickness (IMT) and exhibit non-alcoholic fatty liver disease (NAFLD) diagnosed by ultrasonography, as compared with NGT subjects with 1-h PG <155mg/dL and impaired glucose tolerance (IGT). METHODS Cardio-metabolic profile, OGTT, measurements of carotid IMT and liver ultrasonography were analyzed in 171 non-diabetic children with obesity. Subjects were divided into 3 groups: NGT subjects with a 1-h PG <155mg/dL, NGT subjects with a 1-h PG ≥155mg/dL, and IGT subjects. RESULTS As compared with NGT individuals with a 1-h PG <155mg/dL, NGT individuals with a 1-h PG ≥155mg/dL exhibited higher carotid IMT (0.75±0.15mm vs. 0.68±0.15mm; p<0.05). No significant differences were observed in carotid IMT between IGT and NGT subjects with a 1-h PG ≥155mg/dL (0.75±0.18mm vs 0.75±0.15mm; p>0.05). Of the three glycemic parameters, 1-h and 2-h PG, but not fasting glucose, were significantly correlated with carotid IMT. There were no significant differences for increased risk of having NAFLD between the three groups. CONCLUSIONS These data suggest that a value of 1-h PG ≥155mg/dL in children and adolescents with obesity is as important as IGT with respect to cardiovascular risks.
Collapse
Affiliation(s)
- Suna Kılınç
- Health Sciences University, Bagcılar Training and Research Hospital, Department of Pediatric Endocrinology, Turkey.
| | - Tuna Demirbaş
- Health Sciences University, Bagcılar Training and Research Hospital, Department of Radiology, Turkey.
| | - Enver Atay
- Medipol University Hospital, Department of Pediatrics, Turkey.
| | - Ömer Ceran
- Medipol University Hospital, Department of Pediatrics, Turkey.
| | - Zeynep Atay
- Medipol University Hospital, Department of Pediatric Endocrinology, Turkey.
| |
Collapse
|