1
|
Bakr MM, Shamel M, Raafat SN, Love RM, Al‐Ankily MM. Effect of pulp capping materials on odontogenic differentiation of human dental pulp stem cells: An in vitro study. Clin Exp Dent Res 2024; 10:e816. [PMID: 38053499 PMCID: PMC10860438 DOI: 10.1002/cre2.816] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
OBJECTIVES Migration and differentiation of human dental pulp stem cells (hDPSCs) is a vital and key factor in the success of reparative dentin formation for maintenance of pulp vitality. Pulp capping materials are used to stimulate DPSCs to induce new dentin formation. Thus, the aim of the present study was to compare the response of DPSCs to four commercially available pulp capping materials: a bioactive bioceramic (Material 1), a nonresinous ready-to-use bioceramic cement (Material 2), a bioactive composite (Material 3), and a biocompatible, dual-cured, resin-modified calcium silicate (Material 4). MATERIALS AND METHODS hDPSCs were isolated and cultured from freshly extracted teeth and were then characterized by flow cytometry and multilineage differentiation. Discs prepared from pulp capping materials were tested with hDPSCs and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, cell migration assay and odontogenic differentiation assay was performed. Expression of osteogenic markers (osteopontin, RUNX family transcription factor 2, osteocalcin) and the odontogenic marker (dentin sialophosphoprotein) was detected using reverse transcription-polymerase chain reaction. RESULTS Materials 1, 2, and 3 generated more cell viability than Material 4. Furthermore, Material 4 showed the least wound exposure percentage, while Material 3 showed the highest percentage. Enhanced mineralization was found in hDSCPs cultured with Material 3, followed by Material 1, and then Material 2, while Material 4 revealed the least calcified mineralization. CONCLUSIONS The results of this study were inconclusive regards contemporary bioceramic materials designed for vital pulp therapy as they have different effects on hDPSC. Further testing for cytotoxicity using live-dead staining, animal experiments, clinical trials, and independent analyses of these biomaterials is necessary for clinicians to make an informed decision for their use.
Collapse
Affiliation(s)
- Mahmoud M. Bakr
- School of Medicine and DentistryGriffith UniversityGold CoastQueenslandAustralia
| | - Mohamed Shamel
- Oral Biology Department, Faulty of DentistryThe British University in EgyptCairoEgypt
| | - Shereen N. Raafat
- Department of Pharmacology and Toxicology, Faculty of DentistryThe British University in EgyptCairoEgypt
| | - Robert M. Love
- School of Medicine and DentistryGriffith UniversityGold CoastQueenslandAustralia
| | - Mahmoud M. Al‐Ankily
- Oral Biology Department, Faulty of DentistryThe British University in EgyptCairoEgypt
| |
Collapse
|
2
|
Taghvaei N, Ghavami-Lahiji M, Evazalipour M, Tayefeh Davalloo R, Zamani E. Ion release, biocompatibility, and bioactivity of resin-modified calcium hydroxide cavity liners. BMC Oral Health 2023; 23:1034. [PMID: 38129851 PMCID: PMC10740215 DOI: 10.1186/s12903-023-03723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The placement of liners near the pulp area is essential for therapeutic effects and maintaining pulp health while stimulating the formation of tertiary dentin. This in vitro study aimed to evaluate the calcium release, pH, biocompatibility, solubility, and bioactivity of three resin-modified calcium hydroxide cavity liners. METHODS The disc specimens of each cavity liner were prepared using polyethylene molds of 7 mm in diameter and 2 mm in height (n = 10). Three light-cure liners evaluated include Ultra-Blend Plus (UB), Base-it (BI), and Master Dent (MD). The samples were then immersed in flasks containing 10 mL of distilled water. Calcium ion release, pH, and solubility were evaluated in two weeks of incubation. The cytotoxicity of extracts adjacent to the specimens was evaluated by MTT assay using NIH/3T3 cells after 1, 3, and 7 days of incubation. The ability to induce the nucleation of calcium phosphates (CaPs) after 28-day immersion in a simulated body fluid was investigated by SEM-EDX analysis. Statistical analysis was performed using ANOVA, Kruskal-Wallis, and repeated measures tests at the significant level of 0.05. RESULTS There was a significant difference in the release of calcium ions among the three liners investigated on days 1, 7, and 14 (p < 0.05). UB liners exhibited a significantly higher amount of calcium release than the other two liners, followed by BI, and MD. On day 1, there was no significant difference in the average pH among the three liners. However, after day 7, the MD liner showed a significant decrease in pH compared to the other two liners. BI liner demonstrated the highest level of biocompatibility, followed by the MD and UB liners. UB showed a high calcium release, solubility with no alkalizing activity, and the formation of more mature Ca-rich apatite deposits than the other two liners. CONCLUSION Based on the results of this study, the cavity liner material's performance is material dependent. It can impact ion release, biocompatibility, and bioactivity which are important factors to consider in clinical practice. Further studies are needed to investigate the long-term effects of different liner materials on oral tissues.
Collapse
Affiliation(s)
- Nastaran Taghvaei
- Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehrsima Ghavami-Lahiji
- Department of Restorative Dentistry, Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehdi Evazalipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Tayefeh Davalloo
- Department of Restorative Dentistry, Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Ko JW, Sakong J, Kang S. Cytotoxicity of dental self-curing resin for a temporary crown: an in vitro study. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2023; 40:S1-S8. [PMID: 37098682 DOI: 10.12701/jyms.2023.00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/21/2023] [Accepted: 03/31/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Residual monomer tests using high-performance liquid chromatography and cytotoxicity tests were performed to analyze the effect on the oral mucosa of a self-curing resin for provisional crown production. METHODS A cytotoxicity test was performed to confirm whether leaked residual monomers directly affected oral mucosal cells. The cytotoxicity of the liquid and solid resin polymers was measured using a water-soluble tetrazolium (WST) test and microplate reader. RESULTS In the WST assay using a microplate reader, 73.4% of the cells survived at a concentration of 0.2% liquid resin polymer. The cytotoxicity of the liquid resin polymer was low at ≤0.2%. For the solid resins, when 100% of the eluate was used from each specimen, the average cell viability was 91.3% for the solid resin polymer and 100% for the hand-mixed self-curing resin, which is higher than the cell viability standard of 70%. The cytotoxicity of the solid resin polymer was low. CONCLUSION Because the polymerization process of the self-curing resin may have harmful effects on the oral mucosa during the second and third stages, the solid resin should be manufactured indirectly using a dental model.
Collapse
Affiliation(s)
- Jae-Wan Ko
- Department of Dental Technology, Daegu Health College, Daegu, Korea
- Department of Public Health, Graduate School of Environment and Public Health Studies, Yeungnam University, Daegu, Korea
| | - Joon Sakong
- Department of Occupational and Environmental Medicine, Yeungnam University Hospital, Daegu, Korea
- Department of Preventive Medicine and Public Health, Yeungnam University College of Medicine, Daegu, Korea
| | - Sohee Kang
- Department of Dentistry, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
4
|
Kato G, Araújo R, Rodrigues C, Gomes PS, Grenho L, Fernandes MH. Ex Vivo Osteogenesis Induced by Calcium Silicate-Based Cement Extracts. J Funct Biomater 2023; 14:314. [PMID: 37367277 DOI: 10.3390/jfb14060314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2023] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Calcium silicate-based cements are used in a variety of clinical conditions affecting the pulp tissue, relying on their inductive effect on tissue mineralization. This work aimed to evaluate the biological response of calcium silicate-based cements with distinct properties-the fast-setting Biodentine™ and TotalFill® BC RRM™ Fast Putty, and the classical slow-setting ProRoot® MTA, in an ex vivo model of bone development. Briefly, eleven-day-old embryonic chick femurs were cultured for 10 days in organotypic conditions, being exposed to the set cements' eluates and, at the end of the culture period, evaluated for osteogenesis/bone formation by combining microtomographic analysis and histological histomorphometric assessment. ProRoot® MTA and TotalFill® extracts presented similar levels of calcium ions, although significantly lower than those released from BiodentineTM. All extracts increased the osteogenesis/tissue mineralization, assayed by microtomographic (BV/TV) and histomorphometric (% of mineralized area; % of total collagen area, and % of mature collagen area) indexes, although displaying distinct dose-dependent patterns and quantitative values. The fast-setting cements displayed better performance than that of ProRoot® MTA, with BiodentineTM presenting the best performance, within the assayed experimental model.
Collapse
Affiliation(s)
- Gabriel Kato
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
- LAQV/Requimte, University of Porto, 4100-007 Porto, Portugal
| | - Rita Araújo
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
- LAQV/Requimte, University of Porto, 4100-007 Porto, Portugal
| | - Cláudia Rodrigues
- Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
| | - Pedro Sousa Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
- LAQV/Requimte, University of Porto, 4100-007 Porto, Portugal
| | - Liliana Grenho
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
- LAQV/Requimte, University of Porto, 4100-007 Porto, Portugal
| | - Maria Helena Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
- LAQV/Requimte, University of Porto, 4100-007 Porto, Portugal
| |
Collapse
|
5
|
Wannakajeepiboon M, Sathorn C, Kornsuthisopon C, Santiwong B, Wasanapiarnpong T, Linsuwanont P. Evaluation of the chemical, physical, and biological properties of a newly developed bioceramic cement derived from cockle shells: an in vitro study. BMC Oral Health 2023; 23:354. [PMID: 37270491 DOI: 10.1186/s12903-023-03073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Tricalcium silicate is the main component of commercial bioceramic cements that are widely used in endodontic treatment. Calcium carbonate, which is manufactured from limestone, is one of the substrates of tricalcium silicate. To avoid the environmental impact of mining, calcium carbonate can be obtained from biological sources, such as shelled mollusks, one of which is cockle shell. The aim of this study was to evaluate and compare the chemical, physical, and biological properties of a newly developed bioceramic cement derived from cockle shell (BioCement) with those of a commercial tricalcium silicate cement (Biodentine). METHODS BioCement was prepared from cockle shells and rice husk ash and its chemical composition was determined by X-ray diffraction and X-ray fluorescence spectroscopy. The physical properties were evaluated following the International Organization for Standardization (ISO) 9917-1;2007 and 6876;2012. The pH was tested after 3 h to 8 weeks. The biological properties were assessed using extraction medium from BioCement and Biodentine on human dental pulp cells (hDPCs) in vitro. The 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5[(phenylamino)carbonyl]-2 H-tetrazolium hydroxide assay was used to evaluate cell cytotoxicity following ISO 10993-5;2009. Cell migration was examined using a wound healing assay. Alizarin red staining was performed to detect osteogenic differentiation. The data were tested for a normal distribution. Once confirmed, the physical properties and pH data were analyzed using the independent t-test, and the biological property data were analyzed using one way ANOVA and Tukey's multiple comparisons test at a 5% significance level. RESULTS The main components of BioCement and Biodentine were calcium and silicon. BioCement's and Biodentine's setting time and compressive strength were not different. The radiopacity of BioCement and Biodentine was 5.00 and 3.92 mmAl, respectively (p < 0.05). BioCement's solubility was significantly higher than Biodentine. Both materials exhibited alkalinity (pH ranged from 9 to 12) and demonstrated > 90% cell viability with cell proliferation. The highest mineralization was found in the BioCement group at 7 days (p < 0.05). CONCLUSIONS BioCement exhibited acceptable chemical and physical properties and was biocompatible to human dental pulp cells. BioCement promotes pulp cell migration and osteogenic differentiation.
Collapse
Affiliation(s)
- Monthip Wannakajeepiboon
- Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chankhrit Sathorn
- Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- School of Dentistry and Medical Sciences, Charles Sturt University, Parramatta, NSW, Australia
| | - Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Busayarat Santiwong
- Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | | - Pairoj Linsuwanont
- Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
Al-Ali M, Camilleri J. The scientific management of deep carious lesions in vital teeth using contemporary materials—A narrative review. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.1048137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022] Open
Abstract
AimThe aim of this article is to review the scientific evidence for deep caries removal in permanent vital teeth and the choice of dentine replacement material and restoration of the teeth to maintain long term tooth vitality and function.MethodThe two position statements namely the European Society of Endodontology and the American Association of Endodontists position statements on vital pulp therapy will be scrutinized and compared with regards to the deep caries removal strategy and assessed for evidence of best practice. The properties of materials used to manage vital pulps and the best way to restore the teeth will be reviewed and guidance on the full management of vital teeth will be suggested.ConclusionsPromoting new treatment modalities for reversible and irreversible pulpitis allowing for pulp preservation should be considered. Although debatable, cases with deep caries should be managed by complete non-selective caries removal which will allow for pulpal management if needed and a more predictable outcome can be expected when using the new materials and treatment modalities of vital pulp therapy.
Collapse
|
7
|
Camilleri J, Atmeh A, Li X, Meschi N. Present status and future directions: Hydraulic materials for endodontic use. Int Endod J 2022; 55 Suppl 3:710-777. [PMID: 35167119 PMCID: PMC9314068 DOI: 10.1111/iej.13709] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Hydraulic materials are used in Endodontics due to their hydration characteristics namely the formation of calcium hydroxide when mixing with water and also because of their hydraulic properties. These materials are presented in various consistencies and delivery methods. They are composed primarily of tricalcium and dicalcium silicate, and also include a radiopacifier, additives and an aqueous or a non-aqueous vehicle. Only materials whose primary reaction is with water can be classified as hydraulic. OBJECTIVES Review of the classification of hydraulic materials by Camilleri and the literature pertaining to specific uses of hydraulic cements in endodontics namely intra-coronal, intra-radicular and extra-radicular. Review of the literature on the material properties linked to specific uses providing the current status of these materials after which future trends and gaps in knowledge could be identified. METHODS The literature was reviewed using PUBMED, and for each clinical use, the in vitro properties such as physical, chemical, biological and antimicrobial characteristics and clinical data were extracted and evaluated. RESULTS A large number of publications were retrieved for each clinical use and these were grouped depending on the property type being investigated. CONCLUSIONS The hydraulic cements have made a difference in clinical outcomes. The main shortcoming is the poor testing methodologies employed which provide very limited information and also inhibits adequate clinical translation. Furthermore, the clinical protocols need to be updated to enable the materials to be employed effectively.
Collapse
Affiliation(s)
- Josette Camilleri
- School of DentistryCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Amre Atmeh
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM)Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU)DubaiUnited Arab Emirates
| | - Xin Li
- Department of Oral Health SciencesBIOMAT – Biomaterials Research GroupKU Leuven and DentistryUniversity Hospitals LeuvenLeuvenBelgium
| | - Nastaran Meschi
- Department of Oral Health SciencesBIOMAT – Biomaterials Research GroupKU Leuven and DentistryUniversity Hospitals LeuvenLeuvenBelgium
| |
Collapse
|