1
|
Colón Pérez J, Villarino Fernández RA, Domínguez Lago A, Treviño Castellano MM, Pérez del Molino Bernal ML, Sánchez Poza S, Torres-Sangiao E. Addressing Sexually Transmitted Infections Due to Neisseria gonorrhoeae in the Present and Future. Microorganisms 2024; 12:884. [PMID: 38792714 PMCID: PMC11124187 DOI: 10.3390/microorganisms12050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
It was in the 1800s when the first public publications about the infection and treatment of gonorrhoea were released. However, the first prevention programmes were only published a hundred years later. In the 1940s, the concept of vaccination was introduced into clinical prevention programmes to address early sulphonamide resistance. Since then, tons of publications on Neisseria gonorrhoeae are undisputed, around 30,000 publications today. Currently, the situation seems to be just as it was in the last century, nothing has changed or improved. So, what are we doing wrong? And more importantly, what might we do? The review presented here aims to review the current situation regarding the resistance mechanisms, prevention programmes, treatments, and vaccines, with the challenge of better understanding this special pathogen. The authors have reviewed the last five years of advancements, knowledge, and perspectives for addressing the Neisseria gonorrhoeae issue, focusing on new therapeutic alternatives.
Collapse
Affiliation(s)
- Julia Colón Pérez
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Rosa-Antía Villarino Fernández
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Adrián Domínguez Lago
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - María Mercedes Treviño Castellano
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - María Luisa Pérez del Molino Bernal
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Sandra Sánchez Poza
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Eva Torres-Sangiao
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Liao Y, Xie Q, Yin X, Li X, Xie J, Wu X, Tang S, Liu M, Zeng L, Pan Y, Yang J, Feng Z, Qin X, Zheng H. penA profile of Neisseria gonorrhoeae in Guangdong, China: Novel penA alleles are related to decreased susceptibility to ceftriaxone or cefixime. Int J Antimicrob Agents 2024; 63:107101. [PMID: 38325722 DOI: 10.1016/j.ijantimicag.2024.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 12/15/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Resistance to extended-spectrum cephalosporins (ESCs) has become a public health concern with the spread of Neisseria gonorrhoeae and increasing antimicrobial resistance. Mutation of penA, encoding penicillin-binding protein 2, represents a mechanism of ESC resistance. This study sought to assess penA alleles and mutations associated with decreased susceptibility (DS) to ESCs in N. gonorrhoeae. MATERIALS AND METHODS In 2021, 347 gonococci were collected in Guangdong, China. Minimum inhibitory concentations (MICs) of ceftriaxone and cefixime were determined, and whole-genome sequencing and phylogenetic analysis were performed. Multi-locus sequence typing (MLST) and conventional resistance determinants such as penA, mtrR, PonA and PorB were analysed. penA was genotyped and sequence-aligned using PubMLST. RESULTS Genome-wide phylogenetic analysis revealed that the prevalence of DS to ESCs was highest in Clade 11.1 (100.0%), Clade 2 (66.7%) and Clade 0 (55.7%), and the leading cause was strains with penA-60.001 or new penA alleles in clades. The penA phylogenetic tree is divided into two branches: non-mosaic penA and mosaic penA. The latter contained penA-60.001, penA-10 and penA-34. penA profile analysis indicated that A311V and T483S are closely related to DS to ESCs in mosaic penA. The new alleles NEIS1753_2840 and NEIS1753_2837 are closely related to penA-60.001, with DS to ceftriaxone and cefixime of 100%. NEIS1753_2660, a derivative of penA-10 (A486V), has increased DS to ceftriaxone. NEIS1753_2846, a derivative of penA-34.007 (G546S), has increased DS to cefixime. CONCLUSION This study identified critical penA alleles related to elevated MICs, and trends of gonococcus-evolved mutated penA associated with DS to ESCs in Guangdong.
Collapse
Affiliation(s)
- Yiwen Liao
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinghui Xie
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaona Yin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoxiao Li
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junhui Xie
- The Affiliated Cancer Hospital of Gannan Medical University, Ganzhou, Jiang Xi, China
| | - Xingzhong Wu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sanmei Tang
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingjing Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lihong Zeng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuying Pan
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianjiang Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhanqin Feng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaolin Qin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory for Sexually Transmitted Disease Control, Guangzhou, Guangdong, China
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory for Sexually Transmitted Disease Control, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Podda M, Bonechi S, Palladino A, Scaramuzzino M, Brozzi A, Roma G, Muzzi A, Priami C, Sîrbu A, Bodini M. Classification of Neisseria meningitidis genomes with a bag-of-words approach and machine learning. iScience 2024; 27:109257. [PMID: 38439962 PMCID: PMC10910294 DOI: 10.1016/j.isci.2024.109257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/13/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Whole genome sequencing of bacteria is important to enable strain classification. Using entire genomes as an input to machine learning (ML) models would allow rapid classification of strains while using information from multiple genetic elements. We developed a "bag-of-words" approach to encode, using SentencePiece or k-mer tokenization, entire bacterial genomes and analyze these with ML. Initial model selection identified SentencePiece with 8,000 and 32,000 words as the best approach for genome tokenization. We then classified in Neisseria meningitidis genomes the capsule B group genotype with 99.6% accuracy and the multifactor invasive phenotype with 90.2% accuracy, in an independent test set. Subsequently, in silico knockouts of 2,808 genes confirmed that the ML model predictions aligned with our current understanding of the underlying biology. To our knowledge, this is the first ML method using entire bacterial genomes to classify strains and identify genes considered relevant by the classifier.
Collapse
Affiliation(s)
- Marco Podda
- Vaccines Discovery Data Sciences, GSK Vaccines, GSK, 53100 Siena, Italy
| | - Simone Bonechi
- Vaccines Discovery Data Sciences, GSK Vaccines, GSK, 53100 Siena, Italy
- Department of Computer Science, University of Pisa, 56127 Pisa, Italy
| | - Andrea Palladino
- Vaccines Discovery Data Sciences, GSK Vaccines, GSK, 53100 Siena, Italy
| | | | - Alessandro Brozzi
- Vaccines Discovery Data Sciences, GSK Vaccines, GSK, 53100 Siena, Italy
| | - Guglielmo Roma
- Vaccines Discovery Data Sciences, GSK Vaccines, GSK, 53100 Siena, Italy
| | - Alessandro Muzzi
- Vaccines Discovery Data Sciences, GSK Vaccines, GSK, 53100 Siena, Italy
| | - Corrado Priami
- Department of Computer Science, University of Pisa, 56127 Pisa, Italy
| | - Alina Sîrbu
- Department of Computer Science, University of Pisa, 56127 Pisa, Italy
| | - Margherita Bodini
- Vaccines Discovery Data Sciences, GSK Vaccines, GSK, 53100 Siena, Italy
| |
Collapse
|
4
|
Van Dijck C, Laumen JGE, de Block T, Abdellati S, De Baetselier I, Tsoumanis A, Malhotra-Kumar S, Manoharan-Basil SS, Kenyon C, Xavier BB. The oropharynx of men using HIV pre-exposure prophylaxis is enriched with antibiotic resistance genes: A cross-sectional observational metagenomic study. J Infect 2023; 86:329-337. [PMID: 36764395 DOI: 10.1016/j.jinf.2023.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Phenotypic studies have found high levels of antimicrobial resistance to cephalosporins, macrolides and fluoroquinolones in commensal Neisseria species in the oropharynx of men who have sex with men (MSM) using HIV pre-exposure prophylaxis (PrEP). These species include Neisseria subflava and Neisseria mucosa. This may represent a risk to pathogens like Neisseria gonorrhoeae which tend to take up antibiotic resistance genes (ARGs) from other bacteria. We aimed to explore to what extent the oropharyngeal resistome of MSM using PrEP differed from the general population. METHODS We collected oropharyngeal swabs from 32 individuals of the general population and from 64 MSM using PrEP. Thirty-two MSM had consumed antibiotics in the previous six months, whereas none of the other participants had. Samples underwent shotgun metagenomic sequencing. Sequencing reads were mapped against MEGARes 2.0 to estimate ARG abundance. ARG abundance was compared between groups by zero-inflated negative binomial regression. FINDINGS ARG abundance was significantly lower in the general population than in MSM (ratio 0.41, 95% CI 0.26-0.65). More specifically, this was the case for fluoroquinolones (0.33, 95% CI 0.15-0.69), macrolides (0.37, 95% CI 0.25-0.56), tetracyclines (0.41, 95% CI 0.25-0.69), and multidrug efflux pumps (0.11, 95% CI 0.03-0.33), but not for beta-lactams (1.38, 95% CI 0.73-2.61). There were no significant differences in ARG abundance between MSM who had used antibiotics and those that had not. INTERPRETATION The resistome of MSM using PrEP is enriched with ARGs, independent of recent antibiotic use. Stewardship campaigns should aim to reduce antibiotic consumption in populations at high risk for STIs.
Collapse
Affiliation(s)
- Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium; Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Jolein Gyonne Elise Laumen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium; Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Tessa de Block
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium.
| | - Saïd Abdellati
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium.
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium.
| | - Achilleas Tsoumanis
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium.
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium; University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
5
|
Cassu-Corsi D, Santos FF, Cayô R, Martins WM, Nodari CS, Almeida LG, Martins RA, Carvalho da Silva RJ, Vasconcelos ATR, Pignatari AC, Gales AC. Genomic analyses of ciprofloxacin-resistant Neisseria gonorrhoeae isolates recovered from the largest South American metropolitan area. Genomics 2022; 114:110287. [DOI: 10.1016/j.ygeno.2022.110287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/11/2021] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
|