1
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024:10.1007/s12013-024-01447-x. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Yadav AK, Maharjan Shrestha R, Yadav PN. Anticancer mechanism of coumarin-based derivatives. Eur J Med Chem 2024; 267:116179. [PMID: 38340509 DOI: 10.1016/j.ejmech.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The structural motif of coumarins is related with various biological activities and pharmacological properties. Both natural coumarin extracted from various plants or a new coumarin derivative synthesized by modification of the basic structure of coumarin, in vitro experiments showed that coumarins are a promising class of anti-tumor agents with high selectivity. Cancer is a complex and multifaceted group of diseases characterized by the uncontrolled and abnormal growth of cells in the body. This review focuses on the anticancer mechanism of various coumarins synthesized and isolated in more than a decade. Isopentenyloxycoumarins inhibit angiogenesis by reducing CCl2 chemokine levels. Ferulin C is a potent colchicine-binding agent that destabilizes microtubules, exhibiting antiproliferative and anti-metastatic effects in breast cancer cells through PAK1 and PAK2-mediated signaling. Trimers of triphenylethylene-coumarin hybrids demonstrated significant proliferation inhibition in HeLa, A549, K562, and MCF-7 cell lines. Platinum(IV) complexes with 4-hydroxycoumarin have the potential for high genotoxicity against tumor cells, inducing apoptosis in SKOV-3 cells by up-regulating caspase 3 and caspase 9 expression. Derivatives of 3-benzyl coumarin seco-B-ring induce apoptosis, mediated through the PI3K/Akt/mTOR signaling pathway. Sesquiterpene coumarins inhibit the efflux pump of multidrug resistance-associated protein. Coumarin imidazolyl derivatives inhibit the aromatase enzyme, a major contributor to estrogen overproduction in estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Anand Kumar Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | | | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.
| |
Collapse
|
3
|
Anywar G, Muhumuza E. Bioactivity and toxicity of coumarins from African medicinal plants. Front Pharmacol 2024; 14:1231006. [PMID: 38273831 PMCID: PMC10809390 DOI: 10.3389/fphar.2023.1231006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Coumarins are naturally occuring metabolites from plants and a few micro-organisms. They have been widely used in the food and drug industry in their natural or synthetic forms. Numerous coumarins possess several biological activities such as anti-inflammatory, anti-ulcers, anti-tumour, anti-microbial, anti-coagulant. The aim of this study was to assess the bioactivity, and toxicity of coumarins from African medicinal plants. Methods: We searched online databases and search engines such as PubMed, Google Scholar and Web of Science for key terms such as coumarins, toxicity, bioavailability, bioactivity with appropriate Boolean operators. Only full-length research articles published in English between 1956 to 2023 were reviewed. Results: We recorded 22 coumarins from 15 plant species from Africa. Most of the plant species (33%) were from North Africa. These were followed by East Africa at 21%, then West, and Central Africa at 18.2% each. Most of the coumarins (21.3%) were isolated from the entire plant and the leaves (19.1%) and most of them (46.7%) had some antimicrobial activity. Five coumarins viz osthole, pseudocordatolide C & calanolide, chartreusin and esculetin had either antitumor or anticancer activity. Six coumarins had varying levels and types of toxicity ranging from inhibiting blood clotting as anticoagulants, to cytotoxic effects, causing hyperventilation, tremor, & photophobia, pulmonary haemorrhage, carcinogenic activity, severe neurotoxicity, hepato- and phototoxicity. Conclusion: Several African medicinal plants are sources of various coumarins that possess several biological activities as well as toxicities. This calls for more research into their safety and efficacy because of their wide spread applications as therapeutic agents.
Collapse
Affiliation(s)
- Godwin Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
4
|
Nair L, Mukherjee S, Kaur K, Murphy CM, Ravichandiran V, Roy S, Singh M. Multi compartmental 3D breast cancer disease model–recapitulating tumor complexity in in-vitro. Biochim Biophys Acta Gen Subj 2023; 1867:130361. [PMID: 37019341 DOI: 10.1016/j.bbagen.2023.130361] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Breast cancer is the most common ailment among women. In 2020, it had the highest incidence of any type of cancer. Many Phase II and III anti-cancer drugs fail due to efficacy, durability, and side effects. Thus, accelerated drug screening models must be accurate. In-vivo models have been used for a long time, but delays, inconsistent results, and a greater sense of responsibility among scientists toward wildlife have led to the search for in-vitro alternatives. Stromal components support breast cancer growth and survival. Multi-compartment Transwell models may be handy instruments. Co-culturing breast cancer cells with endothelium and fibroblasts improves modelling. The extracellular matrix (ECM) supports native 3D hydrogels in natural and polymeric forms. 3D Transwell cultured tumor spheroids mimicked in-vivo pathological conditions. Tumor invasion, migration, Trans-endothelial migration, angiogenesis, and spread are studied using comprehensive models. Transwell models can create a cancer niche and conduct high-throughput drug screening, promising future applications. Our comprehensive shows how 3D in-vitro multi compartmental models may be useful in producing breast cancer stroma in Transwell culture.
Collapse
Affiliation(s)
- Lakshmi Nair
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, Assam 788011, India
| | - Souvik Mukherjee
- Department of Pharmaceutical Sciences, Guru Ghasidas University, Koni, Bilaspur,(C.G 495009, India
| | - Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin D02YN77, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, Assam 788011, India.
| |
Collapse
|
5
|
Flores-Morales V, Villasana-Ruíz AP, Garza-Veloz I, González-Delgado S, Martinez-Fierro ML. Therapeutic Effects of Coumarins with Different Substitution Patterns. Molecules 2023; 28:2413. [PMID: 36903660 PMCID: PMC10005689 DOI: 10.3390/molecules28052413] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The use of derivatives of natural and synthetic origin has gained attention because of their therapeutic effects against human diseases. Coumarins are one of the most common organic molecules and are used in medicine for their pharmacological and biological effects, such as anti-inflammatory, anticoagulant, antihypertensive, anticonvulsant, antioxidant, antimicrobial, and neuroprotective, among others. In addition, coumarin derivates can modulate signaling pathways that impact several cell processes. The objective of this review is to provide a narrative overview of the use of coumarin-derived compounds as potential therapeutic agents, as it has been shown that substituents on the basic core of coumarin have therapeutic effects against several human diseases and types of cancer, including breast, lung, colorectal, liver, and kidney cancer. In published studies, molecular docking has represented a powerful tool to evaluate and explain how these compounds selectively bind to proteins involved in various cellular processes, leading to specific interactions with a beneficial impact on human health. We also included studies that evaluated molecular interactions to identify potential biological targets with beneficial effects against human diseases.
Collapse
Affiliation(s)
- Virginia Flores-Morales
- Asymmetric Synthesis and Bio-chemoinformatics Laboratory (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico
| | - Ana P. Villasana-Ruíz
- Asymmetric Synthesis and Bio-chemoinformatics Laboratory (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Samantha González-Delgado
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| |
Collapse
|
6
|
Chen YQ, Song HY, Zhou ZY, Ma J, Luo ZY, Zhou Y, Wang JY, Liu S, Han XH. Osthole inhibits the migration and invasion of highly metastatic breast cancer cells by suppressing ITGα3/ITGβ5 signaling. Acta Pharmacol Sin 2022; 43:1544-1555. [PMID: 34426644 PMCID: PMC9160248 DOI: 10.1038/s41401-021-00757-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the leading cause of death in breast cancer patients. Osthole, as an active compound detected in the traditional Chinese medicine Wenshen Zhuanggu Formula, has shown a promising anti-metastatic activity in human breast cancer cells, but the underlying mechanisms remain ambiguous. In this study we elucidated the anti-metastatic mechanisms of osthole in highly metastatic breast cancer cells and a zebrafish xenograft model. We showed that the expression of integrin α3 (ITGα3) and integrin β5 (ITGβ5) was upregulated in highly metastatic MDA-MB-231, MDA-MB-231BO breast cancer cell lines but was downregulated in poorly metastatic MCF-7 breast cancer cell line, which might be the key targets of osthole's anti-metastatic action. Furthermore, we showed that knockdown of ITGα3 and ITGβ5 attenuated breast cancer cell migration and invasion possibly via suppression of FAK/Src/Rac1 pathway, whereas overexpression of ITGα3 and ITGβ5 caused the opposite effects. Consistently, osthole significantly inhibited breast cancer metastasis by downregulating ITGα3/ITGβ5 signaling in vitro and in vivo. These results provide new evidence that osthole may be developed as a candidate therapeutic drug for metastatic breast cancer.
Collapse
Affiliation(s)
- Yue-qiang Chen
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Hai-yan Song
- grid.411480.80000 0004 1799 1816Institute of Digestive Diseases, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Zhong-yan Zhou
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Jiao Ma
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Zhan-yang Luo
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Ying Zhou
- grid.412540.60000 0001 2372 7462Shanghai TCM-integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200082 China
| | - Jian-yi Wang
- grid.412585.f0000 0004 0604 8558Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Sheng Liu
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Xiang-hui Han
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| |
Collapse
|
7
|
Sharifi-Rad J, Cruz-Martins N, López-Jornet P, Lopez EPF, Harun N, Yeskaliyeva B, Beyatli A, Sytar O, Shaheen S, Sharopov F, Taheri Y, Docea AO, Calina D, Cho WC. Natural Coumarins: Exploring the Pharmacological Complexity and Underlying Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6492346. [PMID: 34531939 PMCID: PMC8440074 DOI: 10.1155/2021/6492346] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Abstract
Coumarins belong to the benzopyrone family commonly found in many medicinal plants. Natural coumarins demonstrated a wide spectrum of pharmacological activities, including anti-inflammatory, anticoagulant, anticancer, antibacterial, antimalarial, casein kinase-2 (CK2) inhibitory, antifungal, antiviral, Alzheimer's disease inhibition, neuroprotective, anticonvulsant, phytoalexins, ulcerogenic, and antihypertensive. There are very few studies on the bioavailability of coumarins; therefore, further investigations are necessitated to study the bioavailability of different coumarins which already showed good biological activities in previous studies. On the evidence of varied pharmacological properties, the present work presents an overall review of the derivation, availability, and biological capacities of coumarins with further consideration of the essential mode of their therapeutic actions. In conclusion, a wide variety of coumarins are available, and their pharmacological activities are of current interest thanks to their synthetic accessibility and riches in medicinal plants. Coumarins perform the valuable function as therapeutic agents in a range of medical fields.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - Pía López-Jornet
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), Clínica Odontológica Universitaria Hospital Morales Meseguer, Adv. Marques de los Velez s/n, 30008 Murcia, Spain
| | - Eduardo Pons-Fuster Lopez
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), Clínica Odontológica Universitaria Hospital Morales Meseguer, Adv. Marques de los Velez s/n, 30008 Murcia, Spain
| | - Nidaa Harun
- Lahore College for Women University, Lahore, Pakistan
| | - Balakyz Yeskaliyeva
- Al-Farabi Kazakh National University, Faculty of Chemistry and Chemical Technology, Almaty 050040, Kazakhstan
| | - Ahmet Beyatli
- University of Health Sciences, Department of Medicinal and Aromatic Plants, Istanbul 34668, Turkey
| | - Oksana Sytar
- Department of Plant Biology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976 Nitra, Slovakia
| | | | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products”, Academy of Sciences of the Republic of Tajikistan, Ayni 299/2, Dushanbe 734063, Tajikistan
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
8
|
Liu L, Deng J, Guo Y. Synthesis of coumarin derivatives in a microfluidic flow system employing the Pechmann condensation: A case study. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ling‐Kang Liu
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Jhao‐Hong Deng
- Institute of Chemistry Academia Sinica Taipei Taiwan
- Department of Applied Chemistry Chinese Culture University Taipei Taiwan
| | - Yang‐Ming Guo
- Department of Applied Chemistry Chinese Culture University Taipei Taiwan
| |
Collapse
|
9
|
Sumorek-Wiadro J, Zając A, Langner E, Skalicka-Woźniak K, Maciejczyk A, Rzeski W, Jakubowicz-Gil J. Antiglioma Potential of Coumarins Combined with Sorafenib. Molecules 2020; 25:E5192. [PMID: 33171577 PMCID: PMC7664656 DOI: 10.3390/molecules25215192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Coumarins, which occur naturally in the plant kingdom, are diverse class of secondary metabolites. With their antiproliferative, chemopreventive and antiangiogenetic properties, they can be used in the treatment of cancer. Their therapeutic potential depends on the type and location of the attachment of substituents to the ring. Therefore, the aim of our study was to investigate the effect of simple coumarins (osthole, umbelliferone, esculin, and 4-hydroxycoumarin) combined with sorafenib (specific inhibitor of Raf (Rapidly Accelerated Fibrosarcoma) kinase) in programmed death induction in human glioblastoma multiforme (T98G) and anaplastic astrocytoma (MOGGCCM) cells lines. Osthole and umbelliferone were isolated from fruits: Mutellina purpurea L. and Heracleum leskowii L., respectively, while esculin and 4-hydroxycoumarin were purchased from Sigma Aldrich (St. Louis, MO, USA). Apoptosis, autophagy and necrosis were identified microscopically after straining with specific fluorochromes. The level of caspase 3, Beclin 1, PI3K (Phosphoinositide 3-kinase), and Raf kinases were estimated by immunoblotting. Transfection with specific siRNA (small interfering RNA) was used to block Bcl-2 (B-cell lymphoma 2), Raf, and PI3K expression. Cell migration was tested with the wound healing assay. The present study has shown that all the coumarins eliminated the MOGGCCM and T98G tumor cells mainly via apoptosis and, to a lesser extent, via autophagy. Osthole, which has an isoprenyl moiety, was shown to be the most effective compound. Sorafenib did not change the proapoptotic activity of this coumarin; however, it reduced the level of autophagy. At the molecular level, the induction of apoptosis was associated with a decrease in the expression of PI3K and Raf kinases, whereas an increase in the level of Beclin 1 was observed in the case of autophagy. Inhibition of the expression of this protein by specific siRNA eliminated autophagy. Moreover, the blocking of the expression of Bcl-2 and PI3K significantly increased the level of apoptosis. Osthole and sorafenib successfully inhibited the migration of the MOGGCCM and T98G cells.
Collapse
Affiliation(s)
- Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (A.M.); (W.R.)
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (A.M.); (W.R.)
| | - Ewa Langner
- Department of Medical Biology, Institute of Rural Health, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin, Poland;
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Aleksandra Maciejczyk
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (A.M.); (W.R.)
| | - Wojciech Rzeski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (A.M.); (W.R.)
- Department of Medical Biology, Institute of Rural Health, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin, Poland;
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (A.M.); (W.R.)
| |
Collapse
|
10
|
Abosharaf HA, Diab T, Atlam FM, Mohamed TM. Osthole extracted from a citrus fruit that affects apoptosis on A549 cell line by histone deacetylasese inhibition (HDACs). ACTA ACUST UNITED AC 2020; 28:e00531. [PMID: 33014717 PMCID: PMC7522091 DOI: 10.1016/j.btre.2020.e00531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/05/2020] [Accepted: 09/19/2020] [Indexed: 11/24/2022]
Abstract
This study aims to investigate the interactions between osthole extracted from Egyptian citrus fruits as HDACs inhibitor by theoretical study and practically. Besides, osthole was assed as anti-cancer activity. In this study, osthole was extracted from the Egyptian citrus fruit and was characterized. The role of osthole as in vitro inhibitor of HDACs was estimated and evaluated the antitumor activity against human lung cancer cells (A549), Caspase-9 activity was detected. The results obtained from GC-MS indicate that the grapefruit showed the highest osthole concentration compared to the other citrus fruits. Moreover, the grapefruit osthole competitively inhibits HDACs. The inhibition constant value, (Ki=3.36 mM), indicates that osthole exerts an inhibitory effect upon HDACs activity. In vitro study of osthole could inhibit the growth of A549 cells that depend on time and concentration. It also induces apoptosis and causes an increase of caspase-9 by osthole. In conclusion, grapefruit osthole could induce the apoptosis in A549 lung cancer cells by inhibiting the histone deacetylase.
Collapse
Affiliation(s)
- Hamed A Abosharaf
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Thoria Diab
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Faten M Atlam
- Theoretical Applied Chemistry Unit (TACO), Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
11
|
Coumarins as Modulators of the Keap1/Nrf2/ARE Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1675957. [PMID: 32377290 PMCID: PMC7196981 DOI: 10.1155/2020/1675957] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
The Keap1/Nrf2/ARE system is a central defensive mechanism against oxidative stress which plays a key role in the pathogenesis and progression of many diseases. Nrf2 is a redox-sensitive transcription factor controlling a variety of downstream antioxidant and cytodefensive genes. Nrf2 has a powerful anti-inflammatory activity mediated via modulating NF-κB. Therefore, pharmacological activation of Nrf2 is a promising therapeutic strategy for the treatment/prevention of several diseases that are underlined by both oxidative stress and inflammation. Coumarins are natural products with promising pharmacological activities, including antioxidant, anticancer, antimicrobial, and anti-inflammatory efficacies. Coumarins are found in many plants, fungi, and bacteria and have been widely used as complementary and alternative medicines. Some coumarins have shown an ability to activate Nrf2 signaling in different cells and animal models. The present review compiles the research findings of seventeen coumarin derivatives of plant origin (imperatorin, visnagin, urolithin B, urolithin A, scopoletin, esculin, esculetin, umbelliferone, fraxetin, fraxin, daphnetin, anomalin, wedelolactone, glycycoumarin, osthole, hydrangenol, and isoimperatorin) as antioxidant and anti-inflammatory agents, emphasizing the role of Nrf2 activation in their pharmacological activities. Additionally, molecular docking simulations were utilized to investigate the potential binding mode of these coumarins with Keap1 as a strategy to disrupt Keap1/Nrf2 protein-protein interaction and activate Nrf2 signaling.
Collapse
|
12
|
Liang J, Zhou J, Xu Y, Huang X, Wang X, Huang W, Li H. Osthole inhibits ovarian carcinoma cells through LC3-mediated autophagy and GSDME-dependent pyroptosis except for apoptosis. Eur J Pharmacol 2020; 874:172990. [PMID: 32057718 DOI: 10.1016/j.ejphar.2020.172990] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
Ovarian carcinoma (OC) begins in the ovaries and remains a highly lethal malignancy. Despite great efforts have been made to fight against OC, there still remain limited therapeutic options owing to chemotherapy drug resistance and serious side effects. Osthole is a derivative of coumarin and extracted from Cnidium monnieri (L.) Cusson, which has been drawn more attention due to its high biological activity in various disease. However, the underlying mechanism of osthole in OC is still unclear. In this study, we aim to evaluate the mechanism of osthole against OC cells. Methodologically, Cell Counting Kit-8 (CCK-8) and LIVE/DEAD™ Cell Imaging experiments were employed to assess cell viability. 2',7'-Dichlorofluorescin diacetate (DCFH-DA) staining, flow cytometry, Hoechst staining, JC-1 staining assay and western blotting were performed to study apoptosis. Transmission electron microscopy, western blotting and monodansyl cadaverine (MDC) staining assay were used to study autophagy. Western blotting and microscopy image were employed to determine pyroptosis. Our results demonstrated that osthole could significantly suppress OC cells growth in a dose-dependent manner. We further proved that osthole could inhibit OC cells growth by mitochondria-mediated apoptosis. Meanwhile, we also discovered that osthole could trigger cell autophagy and lead to cell death. Furthermore, our study revealed that osthole could lead to pyroptosis through inducing the cleavage of gasdermin E (c-GSDME) level. Taken together, Osthole could significantly suppress the growth of OC cells and induce OC cells death via apoptosis, pyroptosis and autophagy, which is a promising new drug for the treatment of OC.
Collapse
Affiliation(s)
- Jing Liang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jianlong Zhou
- School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| | - Youqin Xu
- School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaofei Huang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Xuefei Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wenhua Huang
- School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| | - Hui Li
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Park W, Park S, Song G, Lim W. Inhibitory Effects of Osthole on Human Breast Cancer Cell Progression via Induction of Cell Cycle Arrest, Mitochondrial Dysfunction, and ER Stress. Nutrients 2019; 11:nu11112777. [PMID: 31731635 PMCID: PMC6893636 DOI: 10.3390/nu11112777] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer death in women. Although, recently, the number of pathological studies of breast cancer have increased, it is necessary to identify a novel compound that targets multiple signaling pathways involved in breast cancer. METHODS The effects of osthole on cell viability, apoptosis, mitochondria-mediated apoptosis, production of reactive oxygen species (ROS), and endoplasmic reticulum (ER) stress proteins of BT-474 and MCF-7 breast cancer cell lines were investigated. Signal transduction pathways in both cells in response to osthole were determined by western blot analyses. RESULTS Here, we demonstrated that osthole inhibited cellular proliferation and induced cell cycle arrest through modulation of cell cycle regulatory genes in BT-474 and MCF-7 cells. Additionally, osthole induced loss of mitochondrial membrane potential (MMP), intracellular calcium imbalance, and ER stress. Moreover, osthole induced apoptosis by activating the pro-apoptotic protein, Bax, in both cell lines. Osthole regulated phosphorylation of signaling proteins such as Akt and ERK1/2 in human breast cancer cells. Furthermore, osthole-induced activation of JNK protein-mediated apoptosis in both cell lines. CONCLUSIONS Collectively, the results of the present study indicated that osthole may ameliorate breast cancer and can be a promising therapeutic agent for treatment of breast cancer.
Collapse
Affiliation(s)
- Wonhyoung Park
- Department of Biotechnology, Korea University, Seoul 02841, Korea; (W.P.); (S.P.)
| | - Sunwoo Park
- Department of Biotechnology, Korea University, Seoul 02841, Korea; (W.P.); (S.P.)
| | - Gwonhwa Song
- Department of Biotechnology, Korea University, Seoul 02841, Korea; (W.P.); (S.P.)
- Correspondence: (G.S.); (W.L.); Tel.: +82-2-3290-3012 (G.S.); +82-2-910-4773 (W.L.); Fax: +82-2-3290-4994 (G.S.)
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Korea
- Correspondence: (G.S.); (W.L.); Tel.: +82-2-3290-3012 (G.S.); +82-2-910-4773 (W.L.); Fax: +82-2-3290-4994 (G.S.)
| |
Collapse
|
14
|
Shen Z, Chen J, Lu H. Osthole induced apoptosis in human normal liver cells by regulating cell proliferation and endoplasmic reticulum stress. ENVIRONMENTAL TOXICOLOGY 2019; 34:768-776. [PMID: 30848542 DOI: 10.1002/tox.22743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Osthole (Ost) is often used in treatment for cancer, inflammation and rheumatism in clinic. However, Ost-induced liver injury has been reported. In this study, we aim to investigate the possible mechanism of Ost-induced hepatotoxicity in human normal liver cells (L02). When cells were exposed to Ost, the cell viability was decreased and apoptosis rate increased, the intracellular markers of oxidative stress were changed. Simultaneously, Ost altered apoptotic related proteins levels, including Bcl-2, Bax, Cleaved-Caspase-9/-8/-3, and Pro-Caspase-3/-8. In addition, Ost enhanced the levels of endoplasmic reticulum (ER) stress proteins (GRP78/Bip, CHOP, Caspase-4, IRE1α, PERK, JNK, P-JNK, and ATF4), decreased the cell proliferation and cycle-associated protein (Phospho-Histone H3, P-Cdc25C, Cdc25C, P-Cdc2, Cdc2, and Cyclin B1) level. The results show that Ost has toxic effects on L02 cells. Furthermore, it induces apoptosis by inhibiting cell proliferation, arresting cell cycle at the G2/M phase and activating ER stress.
Collapse
Affiliation(s)
- Zhelun Shen
- Department of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Chen
- Department of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hong Lu
- Department of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
Su J, Zhang F, Li X, Liu Z. Osthole promotes the suppressive effects of cisplatin on NRF2 expression to prevent drug-resistant cervical cancer progression. Biochem Biophys Res Commun 2019; 514:510-517. [PMID: 31056260 DOI: 10.1016/j.bbrc.2019.04.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
Cervical cancer is one of the most commonly diagnosed lethal malignancies among gynecological malignant tumors worldwide. Chemo-resistance is one of the key causal factors in cervical cancer death. Osthole (OST), a natural compound, exhibits various pharmacological activities, including anti-tumor effects. However, its involvement in the chemoresistance of human cervical cancer has not been reported. In the study, we aimed to clarify the role of OST in regulating the chemoresistance of human cervical cancer. The results indicated that cisplatin (CDDP) combined with OST markedly reduced the cell proliferation and induced cervical cancer cells undergoing apoptosis when compared to CDDP alone treatment. In CDDP-resistant cervical cancer cells, OST significantly decreased nuclear factor, erythroid 2 like 2 (NRF2), heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1) and glutamate-cysteine ligase catalytic subunit (GCLC) expression levels from mRNA or protein levels. Additionally, through combination with CDDP, OST dose- and time-dependently reduced NRF2 expression in CDDP-resistant cervical cancer cells. Moreover, we found that CDDP co-treated with OST significantly blocked phosphatidylinositol-3 kinase (PI3K)/AKT signaling pathway. Importantly, CDDP combined with LY294002, inhibitor of phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase (AKT) signaling, markedly decreased the expression of NRF2, HO-1, NQO1 and GCLC in drug-resistant cervical cancer cells. The in vivo study also suggested that OST in combination obviously reduced tumor growth in comparison to the CDDP alone group. Taken together, these findings indicated that OST could be used as a potential sensitizer to reverse chemoresistance of cisplatin-resistant cervical cancer to cisplatin through repressing NRF2 expression partly associated with PI3K/AKT blockage.
Collapse
Affiliation(s)
- Jin Su
- Department of Oncological Radiotherapy, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, China.
| | - Fan Zhang
- Department of Gynecology and Obstetrics, Chuiyangliu Hospital of Beijing, Beijing, 100022, China
| | - Xin Li
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, China
| | - Zi Liu
- Department of Oncological Radiotherapy, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, China
| |
Collapse
|
16
|
Bryda J, Zagaja M, Szewczyk A, Andres-Mach M. Coumarins as potential supportive medication for the treatment of epilepsy. Acta Neurobiol Exp (Wars) 2019. [DOI: 10.21307/ane-2019-011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Lingaraju GS, Balaji KS, Jayarama S, Anil SM, Kiran KR, Sadashiva MP. Synthesis of new coumarin tethered isoxazolines as potential anticancer agents. Bioorg Med Chem Lett 2018; 28:3606-3612. [DOI: 10.1016/j.bmcl.2018.10.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/15/2018] [Accepted: 10/28/2018] [Indexed: 12/16/2022]
|
18
|
Weidong W, Fang Z, Yang H, Qiao L, Shengli H. Synthesis and Characterisation of Novel 3-(4-Benzoyl-5-Phenylfuran-2-yl) Coumarins. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15380427556768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Novel 3-(4-benzoyl-5-phenylfuran-2-yl)coumarin derivates were synthesised via a simple three-step reaction from salicylic aldehydes, ethyl 3-oxobutanoate and 1,3-diphenylpropane-1,3-dione. The synthesised compounds were characterised by NMR, MS and elemental analyses and single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Wang Weidong
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P.R. China
| | - Zhao Fang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P.R. China
| | - Hu Yang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P.R. China
| | - Li Qiao
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P.R. China
| | - Hu Shengli
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P.R. China
| |
Collapse
|
19
|
Farooq S, Banday JA, Hussain A, Nazir M, Qurishi MA, Hamid A, Koul S. Synthesis and Biological Evaluation of Novel Osthol Derivatives as Potent Cytotoxic Agents. Med Chem 2018; 15:138-149. [PMID: 30207222 DOI: 10.2174/1573406414666180911161047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/15/2018] [Accepted: 09/03/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural product, osthol has been found to have important biological and pharmacological roles particularly having inhibitory effect on multiple types of cancer. OBJECTIVE The unmet needs in cancer therapeutics make its derivatization an important and exciting field of research. Keeping this in view, a whole new series of diverse analogues of osthol (1) were synthesized. METHOD All the newly synthesized compounds were made through modification in the lactone ring as well as in the side chain of the osthol molecule and were subjected to anti-proliferative screening through 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) against four different human cancers of diverse origins viz. Colon (Colo-205), lung (A549), Leukemia (THP- 1) and breast (MCF-7) including SV40 transformed normal breast epithelial cell (fR-2). RESULTS Interestingly, among the tested molecules, most of the analogs displayed better antiproliferative activity than the parent Osthol 1. However, among all the tested analogs, compound 28 exhibited the best results against leukemia (THP1) cell line with IC50 of 5µM.Compound 28 induced potent apoptotic effects and G1 phase arrest in leukemia cancer cells (THP1). The population of apoptotic cells increased from 13.8% in negative control to 26.9% at 8μM concentration of 28. Compound 28 also induced a remarkable decrease in mitochondrial membrane potential (ΛΨm) leading to apoptosis of the cancer cells. CONCLUSION A novel series of molecules derived from natural product osthol were synthesized, wherein compound 28 was found to be most effective against leukemia and with 10 fold less toxicity against normal cells. The compound induced cancer inhibition mainly through apoptosis and thus has a potential in cancer therapeutics.
Collapse
Affiliation(s)
- Saleem Farooq
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu-180001, J&K, India.,Department of Chemistry, Government Degree College for Boys, Baramulla, 193101, J&K, India
| | - Javid A Banday
- Department of Chemistry, National Institute of Technology, Hazratbal, Srinagar-190006, J&K, India
| | - Aashiq Hussain
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu -180001, J&K, India
| | - Momina Nazir
- Department of Chemistry, Cluster University of Srinagar, Government College for Women, M.A Road, Srinagar, 190001, J&K, India
| | - Mushtaq A Qurishi
- Islamic University of Science & Technology, Department of Chemistry, Awantipora, J&K, India
| | - Abid Hamid
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu -180001, J&K, India.,Academy of Scientific & Innovative Research (AcSIR), 110020, New Delhi, India
| | - Surrinder Koul
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu-180001, J&K, India
| |
Collapse
|
20
|
Che Y, Li J, Li Z, Li J, Wang S, Yan Y, Zou K, Zou L. Osthole enhances antitumor activity and irradiation sensitivity of cervical cancer cells by suppressing ATM/NF‑κB signaling. Oncol Rep 2018; 40:737-747. [PMID: 29989651 PMCID: PMC6072300 DOI: 10.3892/or.2018.6514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/15/2018] [Indexed: 01/30/2023] Open
Abstract
Osthole (7-methoxy-8-isopentenoxycoumarin) is an O-methylated coumarin, originally extracted from Chinese herbal medicine. It has been demonstrated that osthole has antitumor effects in various cancer cells in vitro. The present study assessed the effects of osthole on the regulation of cervical cancer cell viability, apoptosis, and radiation sensitization. HeLa, SiHa, C-33A and CaSki cervical cancer cell lines were cultured and treated with osthole and/or irradiation and then subjected to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide cell viability, colony formation, apoptosis, acridine orange/ethidium bromide fluorescence staining, wound-healing, Transwell migration and invasion, immunofluorescence, Comet and western blot assays. The data showed that osthole dose-dependently reduced cervical cancer cell viability, proliferation, and migration and invasion, but induced apoptosis. At the protein level, osthole affected the expression of cervical cancer cell epithelial-mesenchymal transition markers, which showed that the expression of E-cadherin was increased, whereas that of vimentin was decreased. Osthole treatment also sensitized cervical cancer cells to irradiation, showing increased DNA damage as assessed by the Comet assay, and inhibited nuclear factor-κB signaling. In conclusion, osthole is an herbal agent that may offer potential for used as an adjuvant treatment for cervical cancer.
Collapse
Affiliation(s)
- Yilin Che
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Zongjuan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Jing Li
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Shuai Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Ying Yan
- Department of Radiotherapy Oncology, The General Hospital of Shenyang Military Command, Shenyang, Liaoning 110016, P.R. China
| | - Kun Zou
- Department of Radiotherapy Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lijuan Zou
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
21
|
Singh G, Bhatti R, Mannan R, Singh D, Kesavan A, Singh P. Osthole ameliorates neurogenic and inflammatory hyperalgesia by modulation of iNOS, COX-2, and inflammatory cytokines in mice. Inflammopharmacology 2018; 27:949-960. [PMID: 29736690 DOI: 10.1007/s10787-018-0486-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/20/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Osthole is a bioactive component reported in medicinal plants such as Angelica pubescens and Cnidium monnieri, known for analgesic activity. However, the toxicity, median effective dose (ED50), and dual modulation of nitric oxide and cyclooxygenase pathways along with inflammatory cytokines of osthole are yet to be determined. METHODS The animals (mice) were assessed for general behaviour and mortality in varying doses (50, 300, and 2000 mg kg-1) of osthole for acute toxicity over 14 days. The analgesic activity was investigated using acetic acid and formalin-induced hyperalgesia, and anti-inflammatory activity was explored in carrageenan-induced paw oedema. ED50 of osthole was calculated using Design Expert software. Involvement of nitric oxide and cyclooxygenase pathways was investigated by agonist challenges with L-arginine and substance P, respectively. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was determined in spinal sections by immunohistochemical analysis. Lipopolysaccharide (LPS) challenge was used to assess in vivo effect on inflammatory cytokines (TNFα and IL-6). RESULTS Acute toxicity studies revealed no behavioural abnormality or mortality on osthole treatment and unremarkable histological findings. Osthole was found to significantly decrease acetic acid and formalin-induced hyperalgesia (ED50 = 5.43 mg kg-1) and carrageenan-induced paw oedema with no toxicity symptoms. Osthole produced a marked decrease in iNOS and COX-2 expression as well as TNFα and IL-6. The findings corroborate to modulation of iNOS and COX-2 and inflammatory cytokines by osthole. This study provides promising insights and prospects for application of osthole in pain management.
Collapse
Affiliation(s)
- Gurjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Rahul Mannan
- Department of Pathology, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, India
| | - Drishtant Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Anup Kesavan
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Palwinder Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
22
|
Liu PY, Chang DC, Lo YS, Hsi YT, Lin CC, Chuang YC, Lin SH, Hsieh MJ, Chen MK. Osthole induces human nasopharyngeal cancer cells apoptosis through Fas-Fas ligand and mitochondrial pathway. ENVIRONMENTAL TOXICOLOGY 2018; 33:446-453. [PMID: 29319219 DOI: 10.1002/tox.22530] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is endemic in Southern China and Southeast Asia. The present study investigated the activity of osthole in suppressing NPC along with the underlying mechanism. Cell growth inhibition was measured using the MTT assay. Apoptosis was detected through 4',6-diamidino-2-phenylindole staining and flow cytometry. Western blotting was used to identify the signaling pathway. Osthole markedly inhibited cell proliferation and induced apoptosis in the NPC cell line. Western blotting results revealed the increased activation of caspases 3, 8, and 9 and poly (ADP-ribose) polymerase. Osthole treatment significantly reduced the expression of the antiapoptotic protein Bcl-2 and increased the expression of the proapoptotic proteins Bax, Bak, BimL, BimS, and t-Bid. Osthole treatment also increased the expression of Fas, FADD, TNF-R1, TNF-R2, DcR2, RIP, and DR5. In addition, osthole treatment significantly increased the expression levels of phosphorylated ERK1/2 and JNK1/2. These results suggested that osthole exerts cytotoxic effects on NPC cell lines mainly through apoptosis mediated by the Fas-Fas ligand and mitochondrial pathway. Osthole could be a potential anticancer agent for NPC.
Collapse
Affiliation(s)
- Pei-Ying Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Dun-Cheng Chang
- Cancer Research Center, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Yu-Sheng Lo
- Cancer Research Center, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Yi-Ting Hsi
- Cancer Research Center, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Chia-Chieh Lin
- Cancer Research Center, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Yi-Ching Chuang
- Cancer Research Center, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua, 500, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, 500, Taiwan
| |
Collapse
|
23
|
Hsieh C, Lin YW, Chen CH, Ku W, Ma F, Yu H, Chu C. Yellow and green pigments from Calophyllum inophyllum L. seed oil induce cell death in colon and lung cancer cells. Oncol Lett 2018; 15:5915-5923. [PMID: 29552223 DOI: 10.3892/ol.2018.8052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/13/2017] [Indexed: 12/18/2022] Open
Abstract
Natural compounds have been candidates for anticancer medicine over the last 20 years. During the process of isolating seed oil from Calophyllum inophyllum L., yellow and green pigments containing multiple compounds with an aromatic structure were identified. High-performance liquid chromatography and nuclear magnetic resonance analysis of these pigments revealed that the compounds present were identical, but the concentration of the compounds was different. Treatment with the pigments was able to induce the death of DLD-1 human colon cancer cells and increase the percentage of the cells in the sub-G1 and sub-G2/M phases in a dose-dependent manner. Additionally, the pigments were able to exhibit cytotoxic activity on A549 and H1975 human non-small cell lung cancer (NSCLC) cell lines at 24 h, with half-maximal inhibitory concentrations (IC50) values of 0.1206 and 0.0676%, respectively for green pigments, and 0.0434 and 0.0501%, respectively for yellow pigments. Furthermore, a decrease in IC50 value was associated with an increase in the duration of treatment. However, a sharp decrease in IC50 value of the yellow pigment was observed for H1975 cells at 48 h and for A549 cells at 72 h compared with no change in IC50 value for the green pigment with time, suggesting that the pigments function and induce cell death differently in the two cell lines. An investigation was performed into the synergistic effect of the green pigment and gefitinib (Iressa®, ZD1839), which is a selective epidermal growth factor receptor-tyrosine kinase inhibitor to block growth factor-mediated cell proliferation. The combination of the green pigment and gefitinib resulted in an enhancement of the decrease in viability of A549 and H1975 cells compared with treatment with gefitinib alone, which suggested that treatment with the green pigments was able to enhance the sensitivity of NSCLC cells to gefitinib. In conclusion, these pigments may be considered for development as anti-colon cancer agents.
Collapse
Affiliation(s)
- Chiawen Hsieh
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi 60004, Taiwan, R.O.C
| | - Yun-Wei Lin
- Department of Biochemistry and Biotechnology Sciences, National Chiayi University, Chiayi 60004, Taiwan, R.O.C
| | - Ching-Hsein Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi 60004, Taiwan, R.O.C
| | - Wenjun Ku
- Forest Chemistry Division, Taiwan Forestry Research Institute, Taipei 10066, Taiwan, R.O.C
| | - Fuching Ma
- Silviculture Division, Taiwan Forestry Research Institute, Taipei 10066, Taiwan, R.O.C
| | - Hanming Yu
- Fushan Botanic Garden, Taiwan Forestry Research Institute, Yuanshan, Yilan 26445, Taiwan, R.O.C
| | - Chishih Chu
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi 60004, Taiwan, R.O.C
| |
Collapse
|
24
|
Osthole protects sepsis-induced acute kidney injury via down-regulating NF-κB signal pathway. Oncotarget 2018; 8:4796-4813. [PMID: 27902475 PMCID: PMC5354872 DOI: 10.18632/oncotarget.13592] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE As a natural coumarin derivative from the Cnidium monnieri(L)Cusson fruit, osthole consists of 7-methoxy-8-isopentenoxy-coumarin. The purpose of this research is to study the mechanism and effect of osthole on sepsis-induced acute kidney injury. EXPERIMENTAL APPROACH The protective effect of osthole on mouse macrophage RAW 264.7 and HK-2 cells induced by LPS in vitro and on acute kidney injury model induced by sepsis and established by puncture and cecal ligation (CLP) in vivo were tested. KEY RESULTS Osthole (20, 40 mg·kg−1) group can greatly attenuate the changes of the score and kidney histopathology damage and enhance the survival time of septic mice. After the CLP surgery, degrees of SCr and BUN related to kidney injury were upregulated. The concentrations of SCr and BUN can be greatly reduced by treatment with osthole. Furthermore, osthole could increase bacterial killing activity and phagocytic activities of macrophages impaired after CLP partly and attenuate blood bacterial counts and leukocyte infiltration markedly. Furthermore, osthole can suppress NF-κB signal pathway through the inhibition of the nuclear translocation by regulating phosphorylation of IκBα and IKKβ and hinder the production of chemoattractant (MCP-1 and IL-8) and proinflammatory cytokines (TNF-α, IL-1β and IL-6). CONCLUSION AND IMPLICATIONS Mainly because of its immunomodulatory properties and anti-inflammatory activity, which might be closely associated with suppression of the stimulation of the NF-κB signal pathway, osthole has protective effect on sepsis-induced kidney injury. It can be seen from such evidence that osthole can be potentially applied in the treatment of acute kidney injury.
Collapse
|
25
|
Amin KM, Taha AM, George RF, Mohamed NM, Elsenduny FF. Synthesis, antitumor activity evaluation, and DNA-binding study of coumarin-based agents. Arch Pharm (Weinheim) 2017; 351. [DOI: 10.1002/ardp.201700199] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Kamilia M. Amin
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Cairo University; Cairo Egypt
| | - Aly M. Taha
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Modern University for Technology and Information MTI; Cairo Egypt
| | - Riham F. George
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Cairo University; Cairo Egypt
| | - Nada M. Mohamed
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Modern University for Technology and Information MTI; Cairo Egypt
| | - Fardous F. Elsenduny
- Biochemistry Division, Faculty of Science, Department of Chemistry; Mansoura University; Mansoura Egypt
| |
Collapse
|
26
|
Zhao X, Chen R, Liu M, Feng J, Chen J, Hu K. Remodeling the blood-brain barrier microenvironment by natural products for brain tumor therapy. Acta Pharm Sin B 2017; 7:541-553. [PMID: 28924548 PMCID: PMC5595291 DOI: 10.1016/j.apsb.2017.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/08/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
Brain tumor incidence shows an upward trend in recent years; brain tumors account for 5% of adult tumors, while in children, this figure has increased to 70%. Moreover, 20%-30% of malignant tumors will eventually metastasize into the brain. Both benign and malignant tumors can cause an increase in intracranial pressure and brain tissue compression, leading to central nervous system (CNS) damage which endangers the patients' lives. Despite the many approaches to treating brain tumors and the progress that has been made, only modest gains in survival time of brain tumor patients have been achieved. At present, chemotherapy is the treatment of choice for many cancers, but the special structure of the blood-brain barrier (BBB) limits most chemotherapeutic agents from passing through the BBB and penetrating into tumors in the brain. The BBB microenvironment contains numerous cell types, including endothelial cells, astrocytes, peripheral cells and microglia, and extracellular matrix (ECM). Many chemical components of natural products are reported to regulate the BBB microenvironment near brain tumors and assist in their treatment. This review focuses on the composition and function of the BBB microenvironment under both physiological and pathological conditions, and the current research progress in regulating the BBB microenvironment by natural products to promote the treatment of brain tumors.
Collapse
Affiliation(s)
- Xiao Zhao
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mei Liu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfang Feng
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
27
|
In vitro anticancer activities of osthole against renal cell carcinoma cells. Biomed Pharmacother 2017; 94:1020-1027. [PMID: 28810525 DOI: 10.1016/j.biopha.2017.07.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/11/2017] [Accepted: 07/30/2017] [Indexed: 01/02/2023] Open
Abstract
Renal cell carcinoma (RCC) is a common urinary malignancy that is resistant to chemotherapy and radiotherapy. Osthole, a monomer compound extracted from a traditional Chinese herb, has potent anti-tumor effects on various types of cancer cells. However, the therapeutic effects of osthole on RCC remain unclear. In our study, osthole could suppress the proliferation and colony formation of two RCC cell lines, ACHN and 786-O cells, in a dose-dependent manner. Treatment with osthole resulted in a significant, dose-dependent increase in the expression of pro-apoptotic proteins (cleaved caspase-3 and Bax) and decreased expression of anti-apoptotic proteins (Bcl-2 and survivin), which were consistent with evidence of apoptotic nuclear morphology revealed by DAPI staining. Pre-treatment with osthole attenuated the migratory and invasive abilities of RCC cells in a dose-dependent manner, as evidenced by a reduction in migrating cells in a Transwell assay and a decreased wound closure ratio in a scratch assay as compared with the control. Additionally, osthole down-regulated the expression of migration/invasion-related proteins matrix metalloproteinase (MMP)-2 and MMP-9. Osthole significantly up-regulated epithelial biomarkers (E-cadherin and beta-catenin) and down-regulated mesenchymal biomarkers (N-cadherin and vimentin). Furthermore, our results suggest that osthole suppressed the expression of epithelial-mesenchymal transition transcriptional factors Smad-3, Snail-1, and Twist-1. Taken together, the results of this study suggest that osthole might be a potential novel herbal agent against RCC.
Collapse
|
28
|
Wu HX, Wang YM, Xu H, Wei M, He QL, Li MN, Sun LB, Cao MH. Osthole, a Coumadin Analog from Cnidium monnieri (L.) Cusson, Ameliorates Nucleus Pulposus-Induced Radicular Inflammatory Pain by Inhibiting the Activation of Extracellular Signal-Regulated Kinase in Rats. Pharmacology 2017; 100:74-82. [DOI: 10.1159/000475599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
Abstract
Aim: This study was aimed at assessing the role of extracellular signal regulated kinase (ERK) in mechanical allodynia resulting from lumbar disc herniation (LDH) and exploring the osthole's anti-nociceptive effect on ERK activation. Methods: Radicular pain was generated by applying nucleus pulposus (NP) to the L5 dorsal root ganglion (DRG). Allodynia was measured using Von Frey filaments to calculate the mechanical pain threshold. Phosphorylated ERK and total ERK protein in the lumbar spinal dorsal horn was detected by using the Western blot technique. Cyclooxygenase 2 (COX-2) mRNA was assessed by real-time reverse-transcription polymerase chain reaction. Results: The application of NP to L5 DRG induced mechanical hypersensitivity which lasted for at least 28 days, and a significant increase of ERK phosphorylation in the ipsilateral spinal dorsal horn from postoperative day (POD) 1 to POD 21. ERK inhibitor attenuated NP-induced hyperalgesia compared to the dimethyl sulfoxide-(vehicle control) administered group (p < 0.05). Epidural treatment with osthole could ameliorate NP-evoked hyperalgesia by suppressing the activation of ERK rather than decreasing the expression of ERK protein. Osthole could also inhibit the increased expression of COX-2 mRNA in spinal dorsal horn, which was a known downstream effect of ERK signaling pathway. Conclusions: Our results suggest that ERK activation in the spinal dorsal horn plays a vital role in NP-evoked hyperalgesia. Osthole exerts analgesic effect on radicular inflammatory pain in LDH rat model, by down-regulating the mRNA expression of the target gene of COX-2 via inhibiting ERK activation in the spinal dorsal horn.
Collapse
|
29
|
Wu C, Sun Z, Guo B, Ye Y, Han X, Qin Y, Liu S. Osthole inhibits bone metastasis of breast cancer. Oncotarget 2017; 8:58480-58493. [PMID: 28938572 PMCID: PMC5601668 DOI: 10.18632/oncotarget.17024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/21/2017] [Indexed: 01/05/2023] Open
Abstract
Bone is one of the most common sites for breast cancer metastasis, which greatly contributes to patient morbidity and mortality. Osthole, a major extract from Cnidium monnieri (L.), exhibits many biological and pharmacological activities, however, its potential as a therapeutic agent in the treatment of breast cancer bone metastases remain poorly understood. In this study, we set out to investigate whether osthole could inhibit breast cancer metastasis to bone in mice and clarified the potential mechanism of this inhibition. In the murine model of breast cancer osseous metastasis, mice that received osthole developed significantly less bone metastases and displayed decreased tumor burden when compared with mice in the control group. Osthole inhibited breast cancer cell growth, migration, and invasion, and induced apoptosis of breast cancer cells. Additionally, it also regulated OPG/RANKL signals in the interactions between bone cells (osteoblasts and osteoclasts) and cancer cells. Besides, it also inhibited TGF-β/Smads signaling in breast cancer metastasis to bone in MDA-231BO cells. The results of this study suggest that osthole has real potential as a therapeutic candidate in the treatment of breast cancer patients with bone metastases.
Collapse
Affiliation(s)
- Chunyu Wu
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhenping Sun
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Baofeng Guo
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yiyi Ye
- Pharmacology Laboratory of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xianghui Han
- Pharmacology Laboratory of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yuenong Qin
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Sheng Liu
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.,Pharmacology Laboratory of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
30
|
Ballazhi L, Imeri F, Jashari A, Popovski E, Stojković G, Dimovski AJ, Mikhova B, Mladenovska K. Original research paper. Hydrazinyldiene-chroman-2,4-diones in inducing growth arrest and apoptosis in breast cancer cells: Synergism with doxorubicin and correlation with physicochemical properties. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2017; 67:35-52. [PMID: 28231049 DOI: 10.1515/acph-2017-0006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 11/15/2022]
Abstract
This study evaluates the effects of previously synthesized hydrazinyldiene-chroman-2,4-diones on cell proliferation and apoptosis, cell cycle distribution and migration capacity of MCF-7 breast cancer cells in synergy with doxorubicin. Physicochemical properties of the synthesized compounds were correlated with their structure and activity. Significant cell viability decrease in comparison with the effect of doxorubicin alone and the reference 4-hydroxycoumarin was observed when combination treatment comprising doxorubicin and the title compounds was applied. Synergistic effect with doxorubicin was also observed in down-regulation of phospho-Thr308Akt levels, confirming reduced proliferation and increased apoptosis. Combined treatment increased the percentage of cells arrested at the G2/M stage. Additive inhibition of cell migration was also observed, pointing to the possibility of reducing the risk of metastases. With their solubility profile and log D7.4, all the synthesized compounds follow Lipinski's rule of five for good permeability (absorption) potential.
Collapse
Affiliation(s)
- Lulzime Ballazhi
- Faculty of Pharmacy, Center of Biomolecular Pharmaceutical Analyses University “Ss Cyril and Methodius” , 1000 Skopje , Macedonia (the former Yugoslav Republic of)
| | - Faik Imeri
- Institute of Physiology, University of Zürich , CH-8057, Zürich , Switzerland
| | - Ahmed Jashari
- Faculty of Natural Sciences & Mathematics State University of Tetovo , 1200 Tetovo , Macedonia (the former Yugoslav Republic of)
| | - Emil Popovski
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius” , PO Box 162 1000 Skopje , Macedonia (the former Yugoslav Republic of)
| | - Goran Stojković
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius” , PO Box 162 1000 Skopje , Macedonia (the former Yugoslav Republic of)
| | - Aleksandar J. Dimovski
- Faculty of Pharmacy, Center of Biomolecular Pharmaceutical Analyses University “Ss Cyril and Methodius” , 1000 Skopje , Macedonia (the former Yugoslav Republic of)
| | - Bozhana Mikhova
- Bulgarian Academy of Sciences Institute of Organic Chemistry with Centre of Phytochemistry , 1113 Sofia , Bulgaria
| | - Kristina Mladenovska
- Faculty of Pharmacy, Center of Biomolecular Pharmaceutical Analyses University “Ss Cyril and Methodius” , 1000 Skopje , Macedonia (the former Yugoslav Republic of)
| |
Collapse
|
31
|
Jiang G, Liu J, Ren B, Tang Y, Owusu L, Li M, Zhang J, Liu L, Li W. Anti-tumor effects of osthole on ovarian cancer cells in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:368-376. [PMID: 27566206 DOI: 10.1016/j.jep.2016.08.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cnidium monnieri (L.) Cusson is a commonly used traditional Chinese medicine to treat gynecological disease in some countries. Osthole, an active O-methylated coumadin isolated from Cnidium monnieri (L.) Cusson, has been shown to induce various beneficial biochemical effects such as anti-seizure and anti-inflammatory effects. However, the anti-tumor mechanism of osthole is not well known. AIM OF STUDY Here, we show that osthole inhibited the proliferation and migration of two widely used ovarian cancer cell lines, A2780 and OV2008 cells, in a dose-dependent manner. The study investigated the molecular mechanisms underlying ovarian cancer cells proliferation, apoptosis, cell cycle arrest and migration triggered by osthole. MATERIALS AND METHODS Ovarian cancer cell lines A2780, OV2008 and normal ovarian cell line IOSE80 were used as experimental model. MTT assay was employed to evaluate cell viability. Flow cytometry assays were performed to confirm apoptosis and cell cycle. We employed wound healing and transwell assays to delineate invasive and migratory potential triggered by osthole. RESULTS MTT assays indicated that cell viability significantly decreased in ovarian cancer cells treated with osthole without effect on normal ovarian cells. Flow cytometric analysis revealed that osthole suppressed cells proliferation by promoting G2/M arrest and inducing apoptosis. The underlying mechanisms involved were regulation of the relative apoptotic protein Bcl-2, Bax and Caspase 3/9. In addition, wound healing and transwell assays revealed that the migratory potential and activity of matrix metalloproteinase MMP-2 and MMP-9 were markedly inhibited when cells were exposed to osthole. CONCLUSION Our findings suggested that osthole has the potential to be used in novel anti-cancer therapeutic formulations for ovarian cancer treatment.
Collapse
Affiliation(s)
- Guoqiang Jiang
- Department of Biotechnology, Dalian Medical University, Dalian 116044 Liaoning, China
| | - Jia Liu
- Department of Biotechnology, Dalian Medical University, Dalian 116044 Liaoning, China
| | - Baoyin Ren
- Department of Biotechnology, Dalian Medical University, Dalian 116044 Liaoning, China
| | - Yawei Tang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Lvshun south Road, Dalian 116044 Liaoning, China
| | - Lawrence Owusu
- Department of Integrative Medicine, Dalian Medical University, Dalian 116044 Liaoning, China; Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Man Li
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jing Zhang
- Department of Biotechnology, Dalian Medical University, Dalian 116044 Liaoning, China
| | - Likun Liu
- Department of Biotechnology, Dalian Medical University, Dalian 116044 Liaoning, China
| | - Weiling Li
- Department of Biotechnology, Dalian Medical University, Dalian 116044 Liaoning, China.
| |
Collapse
|
32
|
Xu XM, Zhang ML, Zhang Y, Zhao L. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins. Oncol Lett 2016; 12:3779-3784. [PMID: 27895730 PMCID: PMC5104166 DOI: 10.3892/ol.2016.5170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/09/2016] [Indexed: 12/21/2022] Open
Abstract
In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiao-Man Xu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Man-Li Zhang
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yi Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Li Zhao
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
33
|
Anti-cancer effect of Annona Muricata Linn Leaves Crude Extract (AMCE) on breast cancer cell line. Altern Ther Health Med 2016; 16:311. [PMID: 27558166 PMCID: PMC4997662 DOI: 10.1186/s12906-016-1290-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
Background Annona muricata Linn which comes from Annonaceae family possesses many therapeutic benefits as reported in previous studies and to no surprise, it has been used in many cultures to treat various ailments including headaches, insomnia, and rheumatism to even treating cancer. However, Annona muricata Linn obtained from different cultivation area does not necessarily offer the same therapeutic effects towards breast cancer (in regards to its bioactive compound production). In this study, anti-proliferative and anti-cancer effects of Annona muricata crude extract (AMCE) on breast cancer cell lines were evaluated. Methods A screening of nineteen samples of Annona muricata from different location was determined by MTT assay on breast cancer cell lines (MCF-7, MDA-MB-231, and 4 T1) which revealed a varied potency (IC50) amongst them. Then, based on the IC50 profile from the anti-proliferative assay, further downward assays such as cell cycle analysis, Annexin V/FITC, AO/PI, migration, invasion, and wound healing assay were performed only with the most potent leaf aqueous extract (B1 AMCE) on 4 T1 breast cancer cell line to investigate its anti-cancer effect. Then, the in vivo anti-cancer study was conducted where mice were fed with extract after inducing the tumor. At the end of the experiment, histopathology of tumor section, tumor nitric oxide level, tumor malondialdehyde level, clonogenic assay, T cell immunophenotyping, and proteome profiler analysis were performed. Results Annona muricata crude extract samples exhibited different level of cytotoxicity toward breast cancer cell lines. The selected B1 AMCE reduced the tumor’s size and weight, showed anti-metastatic features, and induced apoptosis in vitro and in vivo of the 4 T1 cells. Furthermore, it decreased the level of nitric oxide and malondialdehyde in tumor while also increased the level of white blood cell, T-cell, and natural killer cell population. Conclusion The results suggest that, B1 AMCE is a promising candidate for cancer treatment especially in breast cancer and deserves further research as an alternative to conventional drugs while also stressed out the selection of soursop sample which plays a significant role in determining its potential therapeutic effect on cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1290-y) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Efficacy of osthole for Echinococcus granulosus in vitro and Echinococcus multilocularis in vivo. Vet Parasitol 2016; 226:38-43. [PMID: 27514881 DOI: 10.1016/j.vetpar.2016.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 11/27/2022]
Abstract
Echinococcosis is a zoonotic infection caused by cestode species of the genus Echinococcus; in addition, this zoonosis has long been neglected as a parasitic disease and has limited treatment options. Clinical drugs such as benzimidazole derivatives have limited treatment efficacy. The current study evaluated a novel drug, osthole, with low toxicity and high activity against Echinococcus in vitro and in vivo. The results in vitro indicated that the viability of Echinococcus granulosus protoscoleces in the group treated with osthole (120μM) decreased by 100% within 3days. In vivo experiments were conducted using parasite-infected mice. For this purpose, three groups of infected mice were treated daily for 6 weeks with albendazole (ABZ, 100mg/kg, positive control group), osthole (100mg/kg, experimental group), or honey/PBS (100mg/kg, negative control group), respectively. The osthole- and ABZ-treated groups presented a significant reduction in wet weight of metacestodes, increase in the level of interleukin (IL)-4 and the percentage of eosinophils compared with the control group. Osthole exhibited a high activity against echinococcosis in vivo. In addition, the toxicity of osthole was evaluated via an in vitro 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, as well as via morphological observation and calculation of liver and kidney function indexes in vivo. No obvious toxic effects of osthole were observed in our study. Therefore, this novel drug may be a promising alternative to benzimidazole in anti-echinococcosis chemotherapy.
Collapse
|
35
|
Osthole inhibits histamine-dependent itch via modulating TRPV1 activity. Sci Rep 2016; 6:25657. [PMID: 27160770 PMCID: PMC4861971 DOI: 10.1038/srep25657] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 04/21/2016] [Indexed: 01/18/2023] Open
Abstract
Osthole, an active coumarin isolated from Cnidium monnieri (L.) Cusson, has long been used in China as an antipruritic herbal medicine; however, the antipruitic mechanism of osthole is unknown. We studied the molecular mechanism of osthole in histamine-dependent itch by behavioral test, Ca(2+) imaging, and electrophysiological experiments. First, osthole clearly remitted the scratching behaviors of mice induced with histamine, HTMT, and VUF8430. Second, in cultured dorsal root ganglion (DRG) neurons, osthole showed a dose-dependent inhibitory effect to histamine. On the same neurons, osthole also decreased the response to capsaicin and histamine. In further tests, the capsaicin-induced inward currents were inhibited by osthole. These results revealed that osthole inhibited histamine-dependent itch by modulating TRPV1 activity. This study will be helpful in understanding how osthole exerts anti-pruritus effects and suggests that osthole may be a useful treatment medicine for histamine-dependent itch.
Collapse
|
36
|
Kermani EK, Sajjadi SE, Hejazi SH, Arjmand R, Saberi S, Eskandarian AA. Anti-Leishmania Activity of Osthole. Pharmacognosy Res 2016; 8:S1-4. [PMID: 27114685 PMCID: PMC4821100 DOI: 10.4103/0974-8490.178650] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Treatment of cutaneous leishmaniasis (CL) is occasionally highly resistant to pentavalent antimonials, the gold standard in pharmacotherapy of CL. Since there is no effective vaccine, the discovery of natural antileishmanial products as complementary therapeutic agents could be used to improve the current regimens. OBJECTIVE In this study in vitro and in vivo antileishmanial activities of osthole, a natural coumarin known to possess antibacterial and parasiticidal activities are evaluated. MATERIALS AND METHODS Leishmania major infected J774.A1 macrophages were treated with increasing concentrations of osthole. CL lesions of BALB/c mice were treated topically with 0.2% osthole. RESULTS Osthole exhibited dose-dependent leishmanicidal activity against intracellular amastigotes with IC50 value of 14.95 μg/ml. Treatment of CL lesions in BALB/c mice with osthole significantly declined lesion progression compared to untreated mice (P < 0.05), however did not result in recovery. CONCLUSION Osthole demonstrated remarkable leishmanicidal activity in vitro. Higher concentrations of osthole may demonstrate the therapeutic property in vivo. SUMMARY In vitro and in vivo antileishmanial activities of osthole, a pernylated coumarin extracted from Prangos asperula Boiss., are studied against Leishmania major.
Collapse
Affiliation(s)
- Elaheh Kordzadeh Kermani
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ebrahim Sajjadi
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Arjmand
- Department of Medical Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sedigheh Saberi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Ali Eskandarian
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
37
|
Duan J, Yang Y, Liu H, Dou PC, Tan SY. Osthole ameliorates acute myocardial infarction in rats by decreasing the expression of inflammatory-related cytokines, diminishing MMP-2 expression and activating p-ERK. Int J Mol Med 2015; 37:207-16. [PMID: 26549213 DOI: 10.3892/ijmm.2015.2402] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
Osthole, the active constituent of Cnidium monnieri extracts, has been shown to have a diverse range of pharmacological properties. In the present study, we aimed to evaluate the cardioprotective effects of osthole in a rat model of acute myocardial infarction (AMI). The rats with AMI were treated with 1, 3 and 10 mg/kg of osthole or the vehicle for 4 weeks. The infarct size of the rats with AMI was measured, and casein kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin T (cTnT) activities in the rats with AMI were analyzed using commercially available kits. The nuclear factor-κB (NF-κB), tumor necrosis factor‑α (TNF-α), interleukin (IL)-1β and IL-6 levels in whole blood from rats with AMI were also detected using commercially available kits. The levels of Toll-like receptors 2/4 (TLR2/4) and nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2) were also detected by RT-qPCR. Moreover, the protein expression levels of endothelial nitric oxide synthase (eNOS) and mitogen-activated protein kinase (MAPK) cascades, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38, cyclooxygenase-2 (COX-2), as well as matrix metalloproteinase-2 (MMP-2) were all assayed by western blot analysis. Our results revealed that osthole markedly reduced the infarct size, and the levels of CK, CK-MB, LDH and cTnT in the rats with AMI, and that these cardioprotective effects may be associated with the inhibition of inflammatory reactions, the reduction in MMP-2 activity and the activation of MAPK cascades.
Collapse
Affiliation(s)
- Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yu Yang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Hong Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Peng-Cheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Sheng-Yu Tan
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
38
|
Matos MJ, Rodríguez-Enríquez F, Borges F, Santana L, Uriarte E, Estrada M, Rodríguez-Franco MI, Laguna R, Viña D. 3-Amidocoumarins as Potential Multifunctional Agents against Neurodegenerative Diseases. ChemMedChem 2015; 10:2071-9. [PMID: 26493007 DOI: 10.1002/cmdc.201500408] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/13/2015] [Indexed: 01/23/2023]
Abstract
Monoamine oxidase (MAO) generates reactive oxygen species (ROS), which cause neuronal cell death, causing neurodegeneration. Agents that are able to concurrently inhibit MAO and scavenge free radicals represent promising multifunctional neuroprotective agents that could be used to delay or slow the progression of neurodegenerative diseases. In this work, variously substituted 3-amidocoumarins are described that exert neuroprotection in vitro against hydrogen peroxide in rat cortical neurons, as well as antioxidant activity in a 1,1-diphenyl-2-picrylhydrazyl (DPPH⋅) radical scavenging assay. Selective and reversible inhibitors of the MAO-B isoform were identified. Interestingly, in the case of the 3-benzamidocoumarins, substitution at position 4 with a hydroxy group abolishes MAO-B activity, but the compounds remain active in the neuroprotection model. Further evaluation of 3-heteroarylamide derivatives indicates that it is the nature of the heterocycle that determines the neuroprotective effects. Evaluation in a parallel artificial membrane permeability assay (PAMPA) highlighted the need to further improve the blood-brain barrier permeability of this compound class. However, the compounds described herein adhere to Lipinski's rule of five, suggesting that this novel scaffold has desirable properties for the development of potential drug candidates.
Collapse
Affiliation(s)
- Maria João Matos
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
| | - Fernanda Rodríguez-Enríquez
- Departamento de Farmacología, CIMUS, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martín Estrada
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Reyes Laguna
- Departamento de Farmacología, CIMUS, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Dolores Viña
- Departamento de Farmacología, CIMUS, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
39
|
Li YM, Jia M, Li HQ, Zhang ND, Wen X, Rahman K, Zhang QY, Qin LP. Cnidium monnieri: A Review of Traditional Uses, Phytochemical and Ethnopharmacological Properties. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:835-77. [PMID: 26243582 DOI: 10.1142/s0192415x15500500] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cnidium monnieri (L.) Cuss., an annual plant of the Umbelliferae species is one of the most widely used traditional herbal medicines and its fruits have been used to treat a variety of diseases in China, Vietnam, and Japan. The aim of this review is to provide an up-to-date and comprehensive analysis of the botany, traditional uses, phytochemistry, pharmacology, toxicity and contraindication of Cnidium monnieri (L.) Cuss. and to provide future directions of research on this plant. To date, 350 compounds have been isolated and identified from Cnidium monnieri (L.) Cuss., including the main active constituent, coumarins. In vitro and in vivo studies suggest that osthole and other coumarin compounds possess wide range of pharmacological properties for the treatment of female genitals, male impotence, frigidity, skin-related diseases, and exhibit strong antipruritic, anti-allergic, antidermatophytic, antibacterial, antifungal, anti-osteoporotic effects. Although coumarins have been identified as the main active constituents responsible for the observed pharmacological effects, the molecular mechanisms of their actions are still unknown. Therefore, further studies are still required to reveal the structure-activity relationship of these active constituents. In addition, toxicological and clinical studies are also required to provide further data for pharmaceutical use.
Collapse
Affiliation(s)
- Yi-Min Li
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Min Jia
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hua-Qiang Li
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.,Department of Botany, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nai-Dan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xian Wen
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.,Department of Chemistry of Medicinal Plants, College of Life Science, Inner Mongolia University, Inner Mongolia 010020, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Qiao-Yan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
40
|
Liu YW, Chiu YT, Fu SL, Huang YT. Osthole ameliorates hepatic fibrosis and inhibits hepatic stellate cell activation. J Biomed Sci 2015; 22:63. [PMID: 26231226 PMCID: PMC4522080 DOI: 10.1186/s12929-015-0168-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/16/2015] [Indexed: 12/15/2022] Open
Abstract
Background Hepatic fibrosis is a dynamic process which ultimately leads to cirrhosis in almost patients with chronic hepatic injury. However, progressive fibrosis is a reversible scarring response. Activation of hepatic stellate cells (HSCs) is the prevailing process during hepatic fibrosis. Osthole is an active component majorly contained in the fruit of Cnidium monnieri (L.) Cusson. This present study investigated the therapeutic effects of osthole on rat liver fibrosis and HSC activation. Results We established the thioacetamide (TAA)-model of Sprague–Dawley (SD) rats to induce hepatic fibrosis. Rats were divided into three groups: control, TAA, and TAA + osthole (10 mg/kg). In vivo, osthole significantly reduced liver injury by diminishing levels of plasma AST and ALT, improving histological architecture, decreasing collagen and α-SMA accumulation, and improving hepatic fibrosis scores. Additionally, osthole reduced the expression of fibrosis-related genes significantly. Osthole also suppressed the production of fibrosis-related cytokines and chemokines. Moreover, nuclear translocation of p65 was significantly suppressed in osthole-treated liver. Osthole also ameliorated TAA-induced injury through reducing cellular oxidation. Osthole showed inhibitory effects in inflammation-related genes and chemokines production as well. In vitro, we assessed osthole effects in activated HSCs (HSC-T6 and LX-2). Osthole attenuated TGF-β1-induced migration and invasion in HSCs. Furthermore, osthole decreased TNF-α-triggered NF-κB activities significantly. Besides, osthole alleviated TGF-β1- or ET-1-induced HSCs contractility. Conclusions Our study demonstrated that osthole improved TAA-caused liver injury, fibrogenesis and inflammation in rats. In addition, osthole suppressed HSCs activation in vitro significantly. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0168-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Wei Liu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, No. 155, Li-Nong Street, Sec. 2, Taipei, 11221, Taiwan.
| | - Yung-Tsung Chiu
- Department of Medical Research and Education, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard Sec. 4, Taichung, 40705, Taiwan.
| | - Shu-Ling Fu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, No. 155, Li-Nong Street, Sec. 2, Taipei, 11221, Taiwan.
| | - Yi-Tsau Huang
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, No. 155, Li-Nong Street, Sec. 2, Taipei, 11221, Taiwan. .,National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No. 155-1, Li-Nong Street, Sec. 2, Taipei, 11221, Taiwan.
| |
Collapse
|
41
|
Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:919616. [PMID: 26246843 PMCID: PMC4515521 DOI: 10.1155/2015/919616] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/28/2015] [Indexed: 12/17/2022]
Abstract
This paper reviews the latest understanding of biological and pharmacological properties of osthole (7-methoxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one), a natural product found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. In vitro and in vivo experimental results have revealed that osthole demonstrates multiple pharmacological actions including neuroprotective, osteogenic, immunomodulatory, anticancer, hepatoprotective, cardiovascular protective, and antimicrobial activities. In addition, pharmacokinetic studies showed osthole uptake and utilization are fast and efficient in body. Moreover, the mechanisms of multiple pharmacological activities of osthole are very likely related to the modulatory effect on cyclic adenosine monophosphate (cAMP) and cyclic adenosine monophosphate (cGMP) level, though some mechanisms remain unclear. This review aims to summarize the pharmacological properties of osthole and give an overview of the underlying mechanisms, which showcase its potential as a multitarget alternative medicine.
Collapse
|
42
|
Arsenyan P, Vasiljeva J, Shestakova I, Domracheva I, Jaschenko E, Romanchikova N, Leonchiks A, Rudevica Z, Belyakov S. Selenopheno[3,2-c]- and [2,3-c]coumarins: Synthesis, cytotoxicity, angiogenesis inhibition, and antioxidant properties. CR CHIM 2015. [DOI: 10.1016/j.crci.2014.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Vianna DR, Ruschel L, Dietrich F, Figueiró F, Morrone FB, Canto RFS, Corvello F, Velho A, Crestani A, Teixeira H, von Poser GL, Battastini AMO, Eifler-Lima VL. 4-Methylcoumarins with cytotoxic activity against T24 and RT4 human bladder cancer cell lines. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00039d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
4-Methylcoumarins were synthesized by microwave-assisted synthesis via Pechmann condensation and their cytotoxic activity against human bladder cancer cell lines was investigated.
Collapse
|
44
|
Zhou H, Zheng Y, Liu Y, Hu X, Wu G, Shentu J. Quantification of an antitumor agent (copen) in rat plasma by liquid chromatography-electrospray ionization tandem mass spectrometry and its application in a preclinical pharmacokinetic study. Biomed Chromatogr 2014; 29:975-80. [PMID: 25376426 DOI: 10.1002/bmc.3375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/03/2014] [Accepted: 10/02/2014] [Indexed: 11/12/2022]
Abstract
Copen is a derivative obtained from the structural modification of osthole, which inhibits tumoral proliferation in many tumor cell lines. A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was established for the quantification of copen in rat plasma. After a simple sample preparation procedure by one-step protein precipitation with methanol, copen and bicalutamide (internal standard, IS) were chromatographed on a Zorbax SB-C18 (4.6×100 mm, 1.8 µm) column with a mobile phase consisting of methanol-5 mm ammonium formate water with 0.1% formic acid (80:20, v/v). MS detection was performed on a triple quadrupole tandem mass spectrometer in the multiple reaction monitoring mode with a positive eletrospray ionization source. The assay was validated in the concentration range of 51.58-20,630 ng/mL, with a limit of quantitation (LOQ) of 51.58 ng/mL. The intra- and inter-day precisions (relative standard deviation) were ≤3.21 and ≤11.3%, respectively, with accuracy (%) in the range of 94.66-102.1%. The method was fully validated in a study of the pharmacokinetics of copen (25 mg/kg) after intragastric administration in rats.
Collapse
Affiliation(s)
- Huili Zhou
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Yunliang Zheng
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Yanan Liu
- Guangdong Zonk Drug R&D Limited, Guangdong, Guangzhou, 510730, China
| | - Xingjiang Hu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Guolan Wu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Jianzhong Shentu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
45
|
Shakeel-u-Rehman, Masood-ur-Rahman, Tripathi VK, Singh J, Ara T, Koul S, Farooq S, Kaul A. Synthesis and biological evaluation of novel isoxazoles and triazoles linked 6-hydroxycoumarin as potent cytotoxic agents. Bioorg Med Chem Lett 2014; 24:4243-6. [DOI: 10.1016/j.bmcl.2014.07.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/18/2014] [Accepted: 07/11/2014] [Indexed: 01/13/2023]
|
46
|
Farooq S, Shakeel-u-Rehman, Hussain A, Hamid A, Qurishi MA, Koul S. Click chemistry inspired synthesis and bioevaluation of novel triazolyl derivatives of osthol as potent cytotoxic agents. Eur J Med Chem 2014; 84:545-54. [PMID: 25062005 DOI: 10.1016/j.ejmech.2014.07.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 11/30/2022]
Abstract
A new series of diverse triazoles linked through the hydroxyl group of lactone ring opened osthol (1) were synthesized using click chemistry approach. All the derivatives were subjected to 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) cytotoxicity screening against a panel of seven different human cancer cell lines viz. colon (colo-205), colon (HCT-116), breast (T47D), lung (NCI-H322), lung (A549), prostate (PC-3) and Skin (A-431) to check their cytotoxic potential. Interestingly, among the tested molecules, most of the analogs displayed better cytotoxic activity than the parent osthol (1). Of the synthesized triazoles, compounds 8 showed the best activity with IC50 of 1.3, 4.9, 3.6, 41.0, 35.2, 26.4 and 7.2 μM against colon (Colo-205 and HCT-116), breast (T47D), lung (NCI-H322 and A549), prostate (PC-3) and Skin (A-431) cancer lines respectively. Compound 8 induced potent apoptotic effects in Colo-205 cells. The population of apoptotic cells increased from 11.4% in case of negative control to 24.1% at 25 μM of 8. Compound 8 also induced a remarkable decrease in mitochondrial membrane potential (ΛΨm) leading to apoptosis of cancer cells used. The present study resulted in identification of broad spectrum cytotoxic activity of analogs bearing electron withdrawing substituents, besides the enhanced selective activity of analogs with electron donating moieties.
Collapse
Affiliation(s)
- Saleem Farooq
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Shakeel-u-Rehman
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar 190005, India
| | - Aashiq Hussain
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Abid Hamid
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Mushtaq A Qurishi
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | - Surrinder Koul
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
47
|
Zhang CG, Zhu QL, Zhou Y, Liu Y, Chen WL, Yuan ZQ, Yang SD, Zhou XF, Zhu AJ, Zhang XN, Jin Y. N-Succinyl-chitosan nanoparticles coupled with low-density lipoprotein for targeted osthole-loaded delivery to low-density lipoprotein receptor-rich tumors. Int J Nanomedicine 2014; 9:2919-32. [PMID: 24966673 PMCID: PMC4063822 DOI: 10.2147/ijn.s59799] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
N-Succinyl-chitosan (NSC) was synthesized and NSC nanoparticles (NPs) with loaded osthole (Ost) (Ost/NSC-NPs) were prepared by emulsion solvent diffusion. Subsequently, low-density lipoprotein (LDL)-mediated NSC-NPs with loaded Ost (Ost/LDL-NSC-NPs) were obtained by coupling LDL with Ost/NSC-NPs through amide linkage. The average particle size of Ost/NSC-NPs was approximately 145 nm, the entrapment efficiency was 78.28%±2.06%, and the drug-loading amount was 18.09%±0.17%. The release of Ost from Ost/NSC-NPs in vitro showed a more evident sustained effect than the native material. The half maximal inhibitory concentration of Ost/LDL-NSC-NPs was only 16.23% that of the free Ost at 24 hours in HepG2 cells. Ost inhibited HepG2 cell proliferation by arresting cells in the synthesis phase of the cell cycle and by triggering apoptosis. Cellular uptake and subcellular localization in vitro and near-infrared fluorescence real-time imaging in vivo showed that Ost/LDL-NSC-NPs had high targeting efficacy. Therefore, LDL-NSC-NPs are a promising system for targeted Ost delivery to liver tumor.
Collapse
Affiliation(s)
- Chun-ge Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Qiao-ling Zhu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Yi Zhou
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China ; The Children's Hospital of Wuxi People's Hospital, Nanjing Medical University, Wuxi, People's Republic of China
| | - Yang Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Wei-liang Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Zhi-Qiang Yuan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Shu-di Yang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Xiao-feng Zhou
- College of Radiological Medicine and Protection, Soochow University, Suzhou, People's Republic of China ; Changshu Hospital of Traditional Chinese Medicine, Changshu, People's Republic of China
| | - Ai-jun Zhu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Xue-nong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Yong Jin
- Invasive Technology Department, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
48
|
Liu B, Wu Y, Chang Y. Optimization of Process Parameters of Osthole-Loaded PLGA Microparticles Prepared Using Emulsification–Solvent Extraction. J DISPER SCI TECHNOL 2014. [DOI: 10.1080/01932691.2013.838680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Alabi OD, Gunnink SM, Kuiper BD, Kerk SA, Braun E, Louters LL. Osthole activates glucose uptake but blocks full activation in L929 fibroblast cells, and inhibits uptake in HCLE cells. Life Sci 2014; 102:105-10. [PMID: 24657891 DOI: 10.1016/j.lfs.2014.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 12/20/2022]
Abstract
AIMS Osthole, a coumarin derivative, has been used in Chinese medicine and studies have suggested a potential use in treatment of diabetes and cancers. Therefore, we investigated the effects of osthole and other coumarins on GLUT1 activity in two cell lines that exclusively express GLUT1. MAIN METHODS We measured the magnitude and time frame of the effects of osthole and related coumarins on glucose uptake in two cells lines; L929 fibroblast cells which have low GLUT1 expression levels and low basal glucose uptake and HCLE cells which have high GLUT1 concentrations and high basal uptake. We also explored the effects of these coumarins in combination with other GLUT1 activators. KEY FINDINGS Osthole activates glucose uptake in L929 cells with a modest maximum 1.7-fold activation achieved by 50 μM with both activation and recovery occurring within minutes. However, osthole blocks full acute activation of glucose uptake by other, more robust activators. This behavior mimics the effects of other thiol reactive compounds and suggests that osthole is interacting with cysteine residues, possibly within GLUT1 itself. Coumarin, 7-hydroxycoumarin, and 7-methoxycoumarin, do not affect glucose uptake, which is consistent with the notion that the isoprenoid structure in osthole may be important to gain membrane access to GLUT1. In contrast to its effects in L929 cells, osthole inhibits basal glucose uptake in the more active HCLE cells. SIGNIFICANCE The differential effects of osthole in L929 and HCLE cells indicated that regulation of GLUT1 varies, likely depending on its membrane concentration.
Collapse
Affiliation(s)
- Ola D Alabi
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Stephen M Gunnink
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Benjamin D Kuiper
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Samuel A Kerk
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Emily Braun
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Larry L Louters
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA.
| |
Collapse
|
50
|
Hu XJ, Liu Y, Zhou XF, Zhu QL, Bei YY, You BG, Zhang CG, Chen WL, Wang ZL, Zhu AJ, Zhang XN, Fan YJ. Synthesis and characterization of low-toxicity N-caprinoyl-N-trimethyl chitosan as self-assembled micelles carriers for osthole. Int J Nanomedicine 2013; 8:3543-58. [PMID: 24106424 PMCID: PMC3792007 DOI: 10.2147/ijn.s46369] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Novel amphiphilic chitosan derivatives (N-caprinoyl-N-trimethyl chitosan [CA-TMC]) were synthesized by grafting the hydrophobic moiety caprinoyl (CA) and hydrophilic moiety trimethyl chitosan to prepare carriers with good compatibility for poorly soluble drugs. Based on self-assembly, CA-TMC can form micelles with sizes ranging from 136 nm to 212 nm. The critical aggregation concentration increased from 0.6 mg • L(-1) to 88 mg • L(-1) with decrease in the degree of CA substitution. Osthole (OST) could be easily encapsulated into the CA-TMC micelles. The highest entrapment efficiency and drug loading of OST-loaded CA-TMC micelles(OST/CA-TMC) were 79.1% and 19.1%, respectively. The antitumor efficacy results show that OST/CA-TMC micelles have significant antitumor activity on Hela and MCF-7 cells, with a 50% of cell growth inhibition (IC50) of 35.8 and 46.7 μg. mL(-1), respectively. Cell apoptosis was the main effect on cell death of Hela and MCF-7 cells after OST administration. The blank micelles did not affect apoptosis or cell death of Hela and MCF-7 cells. The fluorescence imaging results indicated that OST/CA-TMC micelles could be easily uptaken by Hela and MCF-7 cells and could localize in the cell nuclei. These findings suggest that CA-TMC micelles are promising carriers for OST delivery in cancer therapy.
Collapse
Affiliation(s)
- Xiao-juan Hu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|