1
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2025; 93:38-71. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
2
|
Koreeda A, Taguchi R, Miyamoto K, Kuwahara Y, Hirooka K. Protein expression systems combining a flavonoid-inducible promoter and T7 RNA polymerase in Bacillus subtilis. Biosci Biotechnol Biochem 2023; 87:1017-1028. [PMID: 37279445 DOI: 10.1093/bbb/zbad072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
Recombinant protein production must be tightly controlled when overproduction adversely affects the host bacteria. We developed a flavonoid-inducible T7 expression system in Bacillus subtilis using the qdoI promoter to control the T7 RNA polymerase gene (T7 pol). Using the egfp reporter gene controlled by the T7 promoter in a multicopy plasmid, we confirmed that this expression system is tightly regulated by flavonoids, such as quercetin and fisetin. Altering the qdoI promoter for T7 pol control to its hybrid derivative increased the expression level by 6.6-fold at maximum values upon induction. However, faint expression leakage was observed under a noninducing condition. Therefore, the two expression systems with the original qdoI promoter and the hybrid construct can be used selectively, depending on the high control accuracy or production yield required.
Collapse
Affiliation(s)
- Ami Koreeda
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Rina Taguchi
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Kanon Miyamoto
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Yuna Kuwahara
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Kazutake Hirooka
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama, Hiroshima, Japan
| |
Collapse
|
3
|
Mendauletova A, Latham JA. Biosynthesis of the redox cofactor mycofactocin is controlled by the transcriptional regulator MftR and induced by long-chain acyl-CoA species. J Biol Chem 2021; 298:101474. [PMID: 34896395 PMCID: PMC8728441 DOI: 10.1016/j.jbc.2021.101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022] Open
Abstract
Mycofactocin (MFT) is a ribosomally synthesized and post-translationally-modified redox cofactor found in pathogenic mycobacteria. While MFT biosynthetic proteins have been extensively characterized, the physiological conditions under which MFT biosynthesis is required are not well understood. To gain insights into the mechanisms of regulation of MFT expression in Mycobacterium smegmatis mc2155, we investigated the DNA-binding and ligand-binding activities of the putative TetR-like transcription regulator, MftR. In this study, we demonstrated that MftR binds to the mft promoter region. We used DNase I footprinting to identify the 27 bp palindromic operator located 5′ to mftA and found it to be highly conserved in Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium ulcerans, and Mycobacterium marinum. To determine under which conditions the mft biosynthetic gene cluster (BGC) is induced, we screened for effectors of MftR. As a result, we found that MftR binds to long-chain acyl-CoAs with low micromolar affinities. To demonstrate that oleoyl-CoA induces the mft BGC in vivo, we re-engineered a fluorescent protein reporter system to express an MftA–mCherry fusion protein. Using this mCherry fluorescent readout, we show that the mft BGC is upregulated in M. smegmatis mc2155 when oleic acid is supplemented to the media. These results suggest that MftR controls expression of the mft BGC and that MFT production is induced by long-chain acyl-CoAs. Since MFT-dependent dehydrogenases are known to colocalize with acyl carrier protein/CoA-modifying enzymes, these results suggest that MFT might be critical for fatty acid metabolism or cell wall reorganization.
Collapse
Affiliation(s)
- Aigera Mendauletova
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - John A Latham
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA.
| |
Collapse
|
4
|
Kashiwagi FM, Wendler Miranda B, de Oliveira Pedrosa F, de Souza EM, Müller-Santos M. Control of Gene Expression With Quercetin-Responsive Modular Circuits. Front Bioeng Biotechnol 2021; 9:730967. [PMID: 34604189 PMCID: PMC8481877 DOI: 10.3389/fbioe.2021.730967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Control of gene expression is crucial for several biotechnological applications, especially for implementing predictable and controllable genetic circuits. Such circuits are often implemented with a transcriptional regulator activated by a specific signal. These regulators should work independently of the host machinery, with low gratuitous induction or crosstalk with host components. Moreover, the signal should also be orthogonal, recognized only by the regulator with minimal interference with the host operation. In this context, transcriptional regulators activated by plant metabolites as flavonoids emerge as candidates to control gene expression in bacteria. However, engineering novel circuits requires the characterization of the genetic parts (e.g., genes, promoters, ribosome binding sites, and terminators) in the host of interest. Therefore, we decomposed the QdoR regulatory system of B. subtilis, responsive to the flavonoid quercetin, and reassembled its parts into genetic circuits programmed to have different levels of gene expression and noise dependent on the concentration of quercetin. We showed that only one of the promoters regulated by QdoR worked well in E. coli, enabling the construction of other circuits induced by quercetin. The QdoR expression was modulated with constitutive promoters of different transcriptional strengths, leading to low expression levels when QdoR was highly expressed and vice versa. E. coli strains expressing high and low levels of QdoR were mixed and induced with the same quercetin concentration, resulting in two stable populations expressing different levels of their gene reporters. Besides, we demonstrated that the level of QdoR repression generated different noise levels in gene expression dependent on the concentration of quercetin. The circuits presented here can be exploited in applications requiring adjustment of gene expression and noise using a highly available and natural inducer as quercetin.
Collapse
Affiliation(s)
- Fernanda Miyuki Kashiwagi
- Postgraduate Program in Science (Biochemistry), Department of Biochemistry and Molecular Biology, Nitrogen Fixation Laboratory, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Brenno Wendler Miranda
- Biological Sciences Undergraduate Course, Department of Biochemistry and Molecular Biology, Nitrogen Fixation Laboratory, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Fabio de Oliveira Pedrosa
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Emanuel Maltempi de Souza
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
5
|
Chane A, Barbey C, Bourigault Y, Maillot O, Rodrigues S, Bouteiller M, Merieau A, Konto-Ghiorghi Y, Beury-Cirou A, Gattin R, Feuilloley M, Laval K, Gobert V, Latour X. A Flavor Lactone Mimicking AHL Quorum-Sensing Signals Exploits the Broad Affinity of the QsdR Regulator to Stimulate Transcription of the Rhodococcal qsd Operon Involved in Quorum-Quenching and Biocontrol Activities. Front Microbiol 2019; 10:786. [PMID: 31040836 PMCID: PMC6476934 DOI: 10.3389/fmicb.2019.00786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
In many Gram-negative bacteria, virulence, and social behavior are controlled by quorum-sensing (QS) systems based on the synthesis and perception of N-acyl homoserine lactones (AHLs). Quorum-quenching (QQ) is currently used to disrupt bacterial communication, as a biocontrol strategy for plant crop protection. In this context, the Gram-positive bacterium Rhodococcus erythropolis uses a catabolic pathway to control the virulence of soft-rot pathogens by degrading their AHL signals. This QS signal degradation pathway requires the expression of the qsd operon, encoding the key enzyme QsdA, an intracellular lactonase that can hydrolyze a wide range of substrates. QsdR, a TetR-like family regulator, represses the expression of the qsd operon. During AHL degradation, this repression is released by the binding of the γ-butyrolactone ring of the pathogen signaling molecules to QsdR. We show here that a lactone designed to mimic quorum signals, γ-caprolactone, can act as an effector ligand of QsdR, triggering the synthesis of qsd operon-encoded enzymes. Interaction between γ-caprolactone and QsdR was demonstrated indirectly, by quantitative RT-PCR, molecular docking and transcriptional fusion approaches, and directly, in an electrophoretic mobility shift assay. This broad-affinity regulatory system demonstrates that preventive or curative quenching therapies could be triggered artificially and/or managed in a sustainable way by the addition of γ-caprolactone, a compound better known as cheap food additive. The biostimulation of QQ activity could therefore be used to counteract the lack of consistency observed in some large-scale biocontrol assays.
Collapse
Affiliation(s)
- Andrea Chane
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France.,Structure Fédérative de Recherche Normandie Végétale 4277, Mont-Saint-Aignan, France
| | - Corinne Barbey
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France.,Structure Fédérative de Recherche Normandie Végétale 4277, Mont-Saint-Aignan, France.,Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville-du-Grand-Caux, France
| | - Yvann Bourigault
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France.,Structure Fédérative de Recherche Normandie Végétale 4277, Mont-Saint-Aignan, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France
| | - Sophie Rodrigues
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France
| | - Mathilde Bouteiller
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France.,Structure Fédérative de Recherche Normandie Végétale 4277, Mont-Saint-Aignan, France
| | - Annabelle Merieau
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France.,Structure Fédérative de Recherche Normandie Végétale 4277, Mont-Saint-Aignan, France
| | - Yoan Konto-Ghiorghi
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France
| | - Amélie Beury-Cirou
- Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville-du-Grand-Caux, France.,French Federation of Seed Potato Growers (FN3PT/RD3PT), Paris, France
| | - Richard Gattin
- Structure Fédérative de Recherche Normandie Végétale 4277, Mont-Saint-Aignan, France.,Institut Polytechnique UniLaSalle, UP Transformations & Agro-Ressources, Mont-Saint-Aignan, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France
| | - Karine Laval
- Structure Fédérative de Recherche Normandie Végétale 4277, Mont-Saint-Aignan, France.,Institut Polytechnique UniLaSalle, UP Aghyle, Mont-Saint-Aignan, France
| | - Virginie Gobert
- Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville-du-Grand-Caux, France.,French Federation of Seed Potato Growers (FN3PT/RD3PT), Paris, France
| | - Xavier Latour
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université, Université de Rouen Normandie, Évreux, France.,Structure Fédérative de Recherche Normandie Végétale 4277, Mont-Saint-Aignan, France
| |
Collapse
|
6
|
Moses T, Mehrshahi P, Smith AG, Goossens A. Synthetic biology approaches for the production of plant metabolites in unicellular organisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4057-4074. [PMID: 28449101 DOI: 10.1093/jxb/erx119] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synthetic biology is the repurposing of biological systems for novel objectives and applications. Through the co-ordinated and balanced expression of genes, both native and those introduced from other organisms, resources within an industrial chassis can be siphoned for the commercial production of high-value commodities. This developing interdisciplinary field has the potential to revolutionize natural product discovery from higher plants, by providing a diverse array of tools, technologies, and strategies for exploring the large chemically complex space of plant natural products using unicellular organisms. In this review, we emphasize the key features that influence the generation of biorefineries and highlight technologies and strategic solutions that can be used to overcome engineering pitfalls with rational design. Also presented is a succinct guide to assist the selection of unicellular chassis most suited for the engineering and subsequent production of the desired natural product, in order to meet the global demand for plant natural products in a safe and sustainable manner.
Collapse
Affiliation(s)
- Tessa Moses
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Payam Mehrshahi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
7
|
Synthetic Evolution of Metabolic Productivity Using Biosensors. Trends Biotechnol 2016; 34:371-381. [DOI: 10.1016/j.tibtech.2016.02.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 11/23/2022]
|
8
|
Hirooka K. Transcriptional response machineries of Bacillus subtilis conducive to plant growth promotion. Biosci Biotechnol Biochem 2015; 78:1471-84. [PMID: 25209494 DOI: 10.1080/09168451.2014.943689] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Bacillus subtilis collectively inhabits the rhizosphere, where it contributes to the promotion of plant growth, although it does not have a direct symbiotic relationship to plants as observed in the case of rhizobia between leguminous plants. As rhizobia sense the flavonoids released from their host roots through the NodD transcriptional factor, which triggers transcription of the nod genes involved in the symbiotic processes, we supposed that B. subtilis utilizes certain flavonoids as signaling molecules to perceive and adapt to the rhizospheric environment that it is in. Our approaches to identify the flavonoid-responsive transcriptional regulatory system from B. subtilis resulted in the findings that three transcriptional factors (LmrA/QdoR, YetL, and Fur) are responsive to flavonoids, with the modes of action being different from each other. We also revealed a unique regulatory system by two transcriptional factors, YcnK and CsoR, for copper homeostasis in B. subtilis. In this review, we summarize the molecular mechanisms of these regulatory systems with the relevant information and discuss their physiological significances in the mutually beneficial interaction between B. subtilis and plants, considering the possibility of their application for plant cultivation.
Collapse
Affiliation(s)
- Kazutake Hirooka
- a Department of Biotechnology, Faculty of Life Science and Biotechnology , Fukuyama University , Fukuyama , Hiroshima , Japan
| |
Collapse
|
9
|
Abstract
The most common prokaryotic signal transduction mechanisms are the one-component systems in which a single polypeptide contains both a sensory domain and a DNA-binding domain. Among the >20 classes of one-component systems, the TetR family of regulators (TFRs) are widely associated with antibiotic resistance and the regulation of genes encoding small-molecule exporters. However, TFRs play a much broader role, controlling genes involved in metabolism, antibiotic production, quorum sensing, and many other aspects of prokaryotic physiology. There are several well-established model systems for understanding these important proteins, and structural studies have begun to unveil the mechanisms by which they bind DNA and recognize small-molecule ligands. The sequences for more than 200,000 TFRs are available in the public databases, and genomics studies are identifying their target genes. Three-dimensional structures have been solved for close to 200 TFRs. Comparison of these structures reveals a common overall architecture of nine conserved α helices. The most important open question concerning TFR biology is the nature and diversity of their ligands and how these relate to the biochemical processes under their control.
Collapse
|
10
|
Siedler S, Stahlhut SG, Malla S, Maury J, Neves AR. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metab Eng 2013; 21:2-8. [PMID: 24188962 DOI: 10.1016/j.ymben.2013.10.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/04/2013] [Accepted: 10/25/2013] [Indexed: 01/19/2023]
Abstract
This study describes the construction of two flavonoid biosensors, which can be applied for metabolic engineering of Escherichia coli strains. The biosensors are based on transcriptional regulators combined with autofluorescent proteins. The transcriptional activator FdeR from Herbaspirillum seropedicae SmR1 responds to naringenin, while the repressor QdoR from Bacillus subtilis is inactivated by quercetin and kaempferol. Both biosensors showed over a 7-fold increase of the fluorescent signal after addition of their specific effectors, and a linear correlation between the fluorescence intensity and externally added flavonoid concentration. The QdoR-biosensor was successfully applied for detection of kaempferol production in vivo at the single cell level by fluorescence-activated cell sorting. Furthermore, the amount of kaempferol produced highly correlated with the specific fluorescence of E. coli cells containing a flavonol synthase from Arabidopsis thaliana (fls1). We expect the designed biosensors to be applied for isolation of genes involved in flavonoid biosynthetic pathways.
Collapse
Affiliation(s)
- Solvej Siedler
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, 2970 Hørsholm, Denmark
| | - Steen G Stahlhut
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, 2970 Hørsholm, Denmark
| | - Sailesh Malla
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, 2970 Hørsholm, Denmark
| | - Jérôme Maury
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, 2970 Hørsholm, Denmark.
| | - Ana Rute Neves
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, 2970 Hørsholm, Denmark
| |
Collapse
|