1
|
Pacheco PJ, Cabrera JJ, Jiménez-Leiva A, Torres MJ, Gates AJ, Bedmar EJ, Richardson DJ, Mesa S, Tortosa G, Delgado MJ. The copper-responsive regulator CsoR is indirectly involved in Bradyrhizobium diazoefficiens denitrification. FEMS Microbiol Lett 2023; 370:fnad084. [PMID: 37573143 PMCID: PMC10457146 DOI: 10.1093/femsle/fnad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/14/2023] Open
Abstract
The soybean endosymbiont Bradyrhizobium diazoefficiens harbours the complete denitrification pathway that is catalysed by a periplasmic nitrate reductase (Nap), a copper (Cu)-containing nitrite reductase (NirK), a c-type nitric oxide reductase (cNor), and a nitrous oxide reductase (Nos), encoded by the napEDABC, nirK, norCBQD, and nosRZDFYLX genes, respectively. Induction of denitrification genes requires low oxygen and nitric oxide, both signals integrated into a complex regulatory network comprised by two interconnected cascades, FixLJ-FixK2-NnrR and RegSR-NifA. Copper is a cofactor of NirK and Nos, but it has also a role in denitrification gene expression and protein synthesis. In fact, Cu limitation triggers a substantial down-regulation of nirK, norCBQD, and nosRZDFYLX gene expression under denitrifying conditions. Bradyrhizobium diazoefficiens genome possesses a gene predicted to encode a Cu-responsive repressor of the CsoR family, which is located adjacent to copA, a gene encoding a putative Cu+-ATPase transporter. To investigate the role of CsoR in the control of denitrification gene expression in response to Cu, a csoR deletion mutant was constructed in this work. Mutation of csoR did not affect the capacity of B. diazoefficiens to grow under denitrifying conditions. However, by using qRT-PCR analyses, we showed that nirK and norCBQD expression was much lower in the csoR mutant compared to wild-type levels under Cu-limiting denitrifying conditions. On the contrary, copA expression was significantly increased in the csoR mutant. The results obtained suggest that CsoR acts as a repressor of copA. Under Cu limitation, CsoR has also an indirect role in the expression of nirK and norCBQD genes.
Collapse
Affiliation(s)
- Pedro J Pacheco
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Juan J Cabrera
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Andrea Jiménez-Leiva
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - María J Torres
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR4 7TJ, United Kingdom
- Department of Biochemistry and Molecular Biology, Campus Universitario de Rabanales, University of Córdoba, Ed. C6, Planta Baja, 14071 Córdoba, Spain
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR4 7TJ, United Kingdom
| | - Eulogio J Bedmar
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR4 7TJ, United Kingdom
| | - Socorro Mesa
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Germán Tortosa
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - María J Delgado
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
2
|
Choi WW, Jeong H, Kim Y, Lee HS. Gene nceA encodes a Ni/Co-sensing transcription factor to regulate metal efflux in Corynebacterium glutamicum. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6865361. [PMID: 36460048 DOI: 10.1093/mtomcs/mfac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
The function of Corynebacterium glutamicum open reading frame (ORF) NCgl2684 (named nceA in this study), which was annotated to encode a metalloregulator, was assessed using physiological, genetic, and biochemical approaches. Cells with deleted-nceA (ΔnceA) showed a resistant phenotype to NiSO4 and CoSO4 and showed faster growth in minimal medium containing 20 μM NiSO4 or 10 μM CoSO4 than both the wild-type and nceA-overexpressing (P180-nceA) cells. In the ΔnceA strain, the transcription of the downstream-located ORF NCgl2685 (nceB), annotated to encode efflux protein, was increased approximately 4-fold, whereas gene transcription decreased down to 30% level in the P180-nceA strain. The transcriptions of the nceA and nceB genes were stimulated, even when as little as 5 nM NiSO4 was added to the growth medium. Protein NceA was able to bind DNA comprising the promoter region (from -14 to + 18) of the nceA--nceB operon. The protein-DNA interaction was abolished in the presence of 20 μM NiSO4, 50 μM CoSO4, or 50 μM CdSO4. Although manganese induced the transcription of the nceA and nceB genes, it failed to interrupt protein-DNA interaction. Simultaneously, the P180-nceA cells showed increased sensitivity to oxidants such as menadione, hydrogen peroxide, and cumene hydroperoxide, but not diamide. Collectively, our data show that NceA is a nickel- and cobalt-sensing transcriptional regulator that controls the transcription of the probable efflux protein-encoding nceB. The genes are able to suppress intracellular levels of nickel to prevent reactions, which can cause oxidative damage to cellular components.
Collapse
Affiliation(s)
- Won-Woo Choi
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk 27136, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
3
|
Huo Y, Mo J, He Y, Twagirayezu G, Xue L. Transcriptome analysis reveals manganese tolerance mechanisms in a novel native bacterium of Bacillus altitudinis strain HM-12. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157394. [PMID: 35850333 DOI: 10.1016/j.scitotenv.2022.157394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Bacillus altitudinis HM-12, isolated from ferromanganese ore tailings, can resist up to 1200 mM Mn(II) when exposed to concentrations from 50 mM to 1400 mM. HM-12 exhibited high Mn(II) removal efficiency (90.6 %). We report the transcriptional profile of HM-12 using RNA-Seq and found 423 upregulated and 536 downregulated differentially expressed genes (DEGs) compared to the control. Gene Ontology analysis showed that DEGs were mainly linked with transporter activity, binding, catalytic activity in molecular function, cellular anatomical entity in cellular component, cellular process, and metabolic process. Kyoto Encyclopedia of Genes and Genomes analysis showed that DEGs were mostly mapped to membrane transport, signal transduction, carbohydrate and amino acid metabolism, energy metabolism, and cellular community pathways. Transport analysis showed that two manganese importer systems, mntH and mntABC, were significantly downregulated. The manganese efflux genes (mneS, yceF and ykoY) exhibited significant upregulation. Manganese homeostasis seems to be subtly regulated by manganese uptake and efflux genes. Moreover, it was found that copA as a Mn(II) oxidase gene and a copper chaperone gene copZ were considerably upregulated by signal transduction analysis. csoR encoding a transcriptional repressor which can regulate the copZA operon was upregulated. The strong Mn(II) oxidizing activity of HM-12 was also confirmed by physicochemical characterization. In metabolism and environmental information processing, yjqC encoding manganese catalase was significantly upregulated, while katE and katX encoding heme catalases were significantly downregulated. The antioxidant gene pcaC was significantly upregulated, but ykuU encoding alkyl hydroperoxide reductase, yojM encoding superoxide dismutase, and perR encoding redox-sensing transcriptional repressor were downregulated. These results highlight the oxidative activity of HM-12 by regulating the transcription of oxidase, catalase, peroxidase, and superoxide dismutase to sense the cellular redox status and prevent Mn(II) intoxication. This study provides relevant information on the biological tolerance and oxidation mechanisms in response to Mn(II) stress.
Collapse
Affiliation(s)
- Yanli Huo
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Jiarun Mo
- School of Life Sciences, Lanzhou University, Lanzhou 730070, China
| | - Yuanyuan He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Gratien Twagirayezu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lingui Xue
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China.
| |
Collapse
|
4
|
Ogata S, Hirasawa T. Induction of glutamic acid production by copper in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2021; 105:6909-6920. [PMID: 34463802 DOI: 10.1007/s00253-021-11516-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
From the previous transcriptome analysis (Hirasawa et al. Biotechnol J 13:e1700612, 2018), it was found that expression of genes whose expression is regulated by stress-responsive transcriptional regulators was altered during penicillin-induced glutamic acid production in Corynebacterium glutamicum. Therefore, we investigated whether stress treatments, such as copper and iron addition, could induce glutamic acid production in C. glutamicum and found that the addition of copper did induce glutamic acid production in this species. Moreover, we also determined that glutamic acid production levels upon copper addition in a gain-of-function mutant strain of the mechanosensitive channel, NCgl1221, involved in glutamic acid export, were comparable to glutamic acid levels produced upon penicillin addition and biotin limitation in the wild-type strain. Furthermore, disruption of the odhI gene, which encodes a protein responsible for the decreased activity of the 2-oxoglutarate dehydrogenase complex during glutamic acid production, significantly diminished glutamic acid production induced by copper. These results indicate that copper can induce glutamic acid production and this induction requires OdhI like biotin limitation and penicillin addition, but a gain-of-function mutation in the NCgl1221 mechanosensitive channel is necessary for its high-level glutamic acid production. However, a significant increase in odhI transcription was not observed with copper addition in both wild-type and NCgl1221 gain-of-function mutant strains. In addition, disruption of the csoR gene encoding a copper-responsive transcriptional repressor enhanced copper-induced glutamic acid production in the NCgl1221 gain-of-function mutant, indicating that unidentified CsoR-regulated genes may contribute to copper-induced glutamic acid production in C. glutamicum. KEY POINTS: • Copper can induce glutamic acid production by Corynebacterium glutamicum. • Copper-induced glutamic acid production requires OdhI protein. • Copper-induced glutamic acid production requires a gain-of-function mutation in the mechanosensitive channel NCgl1221, which is responsible for the production of glutamic acid.
Collapse
Affiliation(s)
- Shunsuke Ogata
- School of Life Science and Technology, Tokyo Institute of Technology, 4250 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Takashi Hirasawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4250 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
5
|
Furnholm T, Rehan M, Wishart J, Tisa LS. Pb2+ tolerance by Frankia sp. strain EAN1pec involves surface-binding. MICROBIOLOGY-SGM 2017; 163:472-487. [PMID: 28141503 DOI: 10.1099/mic.0.000439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several Frankia strains have been shown to be lead-resistant. The mechanism of lead resistance was investigated for Frankia sp. strain EAN1pec. Analysis of the cultures by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX) and Fourier transforming infrared spectroscopy (FTIR) demonstrated that Frankia sp. strain EAN1pec undergoes surface modifications and binds high quantities of Pb+2. Both labelled and unlabelled shotgun proteomics approaches were used to determine changes in Frankia sp. strain EAN1pec protein expression in response to lead and zinc. Pb2+ specifically induced changes in exopolysaccharides, the stringent response, and the phosphate (pho) regulon. Two metal transporters (a Cu2+-ATPase and cation diffusion facilitator), as well as several hypothetical transporters, were also upregulated and may be involved in metal export. The exported Pb2+ may be precipitated at the cell surface by an upregulated polyphosphate kinase, undecaprenyl diphosphate synthase and inorganic diphosphatase. A variety of metal chaperones for ensuring correct cofactor placement were also upregulated with both Pb+2 and Zn+2 stress. Thus, this Pb+2 resistance mechanism is similar to other characterized systems. The cumulative interplay of these many mechanisms may explain the extraordinary resilience of Frankia sp. strain EAN1pec to Pb+2. A potential transcription factor (DUF156) binding site was identified in association with several proteins identified as upregulated with heavy metals. This site was also discovered, for the first time, in thousands of other organisms across two kingdoms.
Collapse
Affiliation(s)
- Teal Furnholm
- Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Medhat Rehan
- Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Department of Genetics, College of Agriculture, Kafrelsheikh University, Egypt.,Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Saudi Arabia
| | - Jessica Wishart
- Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Louis S Tisa
- Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
6
|
Liang J, Zhang M, Lu M, Li Z, Shen X, Chou M, Wei G. Functional characterization of a csoR-cueA divergon in Bradyrhizobium liaoningense CCNWSX0360, involved in copper, zinc and cadmium cotolerance. Sci Rep 2016; 6:35155. [PMID: 27725778 PMCID: PMC5057107 DOI: 10.1038/srep35155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/26/2016] [Indexed: 12/14/2022] Open
Abstract
Random mutagenesis in a symbiotic nitrogen-fixing Bradyrhizobium liaoningense CCNWSX0360 (Bln0360) using Tn5 identified five copper (Cu) resistance-related genes. They were functionally sorted into three groups: transmembrane transport (cueA and tolC); oxidation (copA); and protection of the membrane barrier (lptE and ctpA). The gene cueA, together with the upstream csoR (Cu-sensitive operon repressor), constituted a csoR-cueA divergon which plays a crucial role in Cu homeostasis. Deletion of cueA decreased the Cu tolerance of cells, and complementation of this mutant restored comparable Cu resistance to that of the wild-type. Transcriptional and fusion expression analysis demonstrated that csoR-cueA divergon was up-regulated by both the monovalent Cu+ and divalent Zn2+/Cd2+, and negatively regulated by transcriptional repressor CsoR, via a bidirectional promoter. Deletion of csoR renders the cell hyper-resistant to Cu, Zn and Cd. Although predicted to encode a Cu transporting P-type ATPase (CueA), cueA also conferred resistance to zinc and cadmium; two putative N-MBDs (N-terminal metal binding domains) of CueA were required for the Cu/Zn/Cd tolerance. Moreover, cueA is needed for nodulation competitiveness of B. liaoningense in Cu rich conditions. Together, the results demonstrated a crucial role for the csoR-cueA divergon as a component of the multiple-metal resistance machinery in B. liaoningense.
Collapse
Affiliation(s)
- Jianqiang Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingzhe Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingmei Lu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhefei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Abstract
Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host.
Collapse
Affiliation(s)
- Erik Ladomersky
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
8
|
Mancini S, Kumar R, Abicht HK, Fischermeier E, Solioz M. Copper resistance and its regulation in the sulfate-reducing bacterium Desulfosporosinus sp. OT. MICROBIOLOGY-SGM 2016; 162:684-693. [PMID: 26873027 DOI: 10.1099/mic.0.000256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Desulfosporosinus sp. OT is a Gram-positive, acidophilic sulfate-reducing firmicute isolated from copper tailings sediment in the Norilsk mining-smelting area in Siberia and represents the first Desulfosporosinus species whose genome has been sequenced. Desulfosporosinus sp. OT is exceptionally copper resistant, which made it of interest to study the resistance mechanism. It possesses a copUAZ operon which is shown here to be involved in copper resistance. The copU gene encodes a CsoR-type homotetrameric repressor. By electrophoretic mobility shift assay, it was shown that CopU binds to the operator/promoter region of the copUAZ operon in the absence of copper and is released from the DNA by Cu+ or Ag+, implying that CopU regulates the operon in a copper/silver-dependent manner. DOT_CopA is a P1B-type ATPase related to other characterized, bacterial copper ATPases. When expressed in a copper-sensitive Escherichia coli ΔcopA mutant, it restores copper resistance to WT levels. His-tagged DOT_CopA was expressed from a plasmid in E. coli and purified by Ni-NTA affinity chromatography. The purified enzyme was most active in the presence of Cu(I) and bacterial phospholipids. These findings indicate that the copUAZ operon confers copper resistance to Desulfosporosinus sp. OT, but do not per se explain the basis of the high copper resistance of this strain.
Collapse
Affiliation(s)
- Stefano Mancini
- Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Ranjeet Kumar
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Helge K Abicht
- Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | | | - Marc Solioz
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia.,Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
9
|
Copper homeostasis-related genes in three separate transcriptional units regulated by CsoR in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 99:3505-17. [DOI: 10.1007/s00253-015-6373-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/23/2014] [Accepted: 12/28/2014] [Indexed: 10/24/2022]
|
10
|
Higgins KA, Giedroc D. Insights into Protein Allostery in the CsoR/RcnR Family of Transcriptional Repressors. CHEM LETT 2014; 43:20-25. [PMID: 24695963 DOI: 10.1246/cl.130965] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CsoR/RcnR transcriptional repressors adopt a disc-shaped, all α-helical dimer of dimers tetrameric architecture, with a four-helix bundle the key structural feature of the dimer. Individual members of this large family of repressors coordinate Cu(I) or Ni(II)/Co(II) or perform cysteine sulfur chemistry in mitigating the effects of metal or metabolite toxicity, respectively. Here we highlight recent insights into the functional diversity of this fascinating family of repressors.
Collapse
Affiliation(s)
- Khadine A Higgins
- Department of Chemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405, USA
| | - David Giedroc
- Department of Chemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405, USA
| |
Collapse
|
11
|
Teramoto H, Inui M, Yukawa H. OxyR acts as a transcriptional repressor of hydrogen peroxide-inducible antioxidant genes in Corynebacterium glutamicum R. FEBS J 2013; 280:3298-312. [PMID: 23621709 DOI: 10.1111/febs.12312] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/02/2013] [Accepted: 04/24/2013] [Indexed: 12/13/2022]
Abstract
OxyR, a LysR-type transcriptional regulator, has been established as a redox-responsive activator of antioxidant genes in bacteria. This study shows that OxyR acts as a transcriptional repressor of katA, dps, ftn and cydA in Corynebacterium glutamicum R. katA encodes H2O2-detoxifing enzyme catalase, dps and ftn are implicated in iron homeostasis and cydA encodes a subunit of cytochrome bd oxidase. Quantitative RT-PCR analyses revealed that expression of katA and dps, but not of ftn and cydA, was induced by H2O2. Disruption of the oxyR gene encoding OxyR resulted in a marked increase in katA and dps mRNAs to a level higher than that induced by H2O2, and the oxyR-deficient mutant showed a H2O2-resistant phenotype. This is in contrast to the conventional OxyR-dependent regulatory model. ftn and cydA were also upregulated by oxyR disruption but to a smaller extent. Electrophoretic mobility shift assays revealed that the OxyR protein specifically binds to all four upstream regions of the respective genes under reducing conditions. We observed that the oxidized form of OxyR similarly bound to not only the target promoter regions, but also nonspecific DNA fragments. Based on these findings, we propose that the transcriptional repression by OxyR is alleviated under oxidative stress conditions in a titration mechanism due to the decreased specificity of its DNA-binding activity. DNase I footprinting analyses revealed that the OxyR-binding site in the four target promoters is ~ 50 bp in length and has multiple T-N11-A motifs, a feature of LysR-type transcriptional regulators, but no significant overall sequence conservation.
Collapse
Affiliation(s)
- Haruhiko Teramoto
- Research Institute of Innovative Technology for the Earth, Kyoto, Japan
| | | | | |
Collapse
|