1
|
Rai SK, Singh A, Kauldhar BS, Yadav SK. Robust nano-enzyme conjugates for the sustainable synthesis of a rare sugar D-tagatose. Int J Biol Macromol 2023; 231:123406. [PMID: 36702217 DOI: 10.1016/j.ijbiomac.2023.123406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
Aim of present study was to develop biological catalysts of L-arabinose isomerase (L-AI) by immobilizing on four different supports such as multiwalled carbon nanotube (MWCNT), graphene oxide (GOx), Santa Barbara Amorphous (SBA-15) and mobile composite matter (MCM-41). Also, comparative analysis of the developed catalysts was performed to evolve the best in terms of transformation efficiency for D-tagatose production. The developed nano-enzyme conjugates (NECs) were characterized using the high resolution transmission electron microscopy (HR-TEM) and elemental analysis was performed by energy dispersive X-ray spectroscopy (EDS). The functional groups were investigated by Fourier transform infra red spectroscopy. Also, the thermo gravimetric analysis (TGA) was employed to plot a thermal degradation weight loss profile of NECs. The conjugated L-AI with MWCNT and GOx were found to be more promising immobilized catalysts due to their ability to provide more surface area. Conversion of D-Galactose to D-Tagatose at moderate temperature and pH was observed to attain the equilibrium level of transformation (~50%). On the contrary, NECs prepared using SBA-15 and MCM-41 as support matrix were unable to reach the equilibrium level of conversion. Additionally, the developed NECs were suitable for reuse in multiple batch cycles. Thus, promising nanotechnology coupled with biocatalysis made the transformation of D-Galactose into D-tagatose more economically sustainable.
Collapse
Affiliation(s)
- Shushil Kumar Rai
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali, Punjab 140306, India; Dept. of Microbial Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Aishwarya Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Baljinder Singh Kauldhar
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali, Punjab 140306, India; Dept. of Microbial Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India.
| |
Collapse
|
2
|
Characterization of l-Arabinose Isomerase from Klebsiella pneumoniae and Its Application in the Production of d-Tagatose from d-Galactose. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
d-Tagatose, a functional sweetener, is converted from d-galactose by l-arabinose isomerase, which catalyzes the conversion of l-arabinose to l-ribulose. In this study, the araA gene encoding l-arabinose isomerase from Klebsiella pneumoniae was cloned and expressed in Escherichia coli, and the expressed enzyme was purified and characterized. The purified l-arabinose isomerase, a soluble protein with 11.6-fold purification and a 22% final yield, displayed a specific activity of 1.8 U/mg for d-galactose and existed as a homohexamer of 336 kDa. The enzyme exhibited maximum activity at pH 8.0 and 40 °C in the presence of Mn2+ and relative activity for pentoses and hexoses in the order l-arabinose > d-galactose > l-ribulose > d-xylulose > d-xylose > d-tagatose > d-glucose. The thermal stability of recombinant E. coli cells expressing l-arabinose isomerase from K. pneumoniae was higher than that of the enzyme. Thus, the reaction conditions of the recombinant cells were optimized to pH 8.0, 50 °C, and 4 g/L cell concentration using 100 g/L d-galactose with 1 mM Mn2+. Under these conditions, 33.5 g/L d-tagatose was produced from d-galactose with 33.5% molar yield and 67 g/L/h productivity. Our findings will help produce d-tagatose using whole-cell reactions, extending its industrial application.
Collapse
|
3
|
Su WB, Li FL, Li XY, Fan XM, Liu RJ, Zhang YW. Using galactitol dehydrogenase coupled with water-forming NADH oxidase for efficient enzymatic synthesis of L-tagatose. N Biotechnol 2021; 62:18-25. [PMID: 33460816 DOI: 10.1016/j.nbt.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
L-Tagatose, a promising building block in the production of many value-added chemicals, is generally produced by chemical routes with a low yield, which may not meet the increasing demands. Synthesis of l-tagatose by enzymatic oxidation of d-galactitol has not been applied on an industrial scale because of the high cofactor costs and the lack of efficient cofactor regeneration methods. In this work, an efficient and environmentally friendly enzymatic method containing a galactitol dehydrogenase for d-galactitol oxidation and a water-forming NADH oxidase for regeneration of NAD+ was first designed and used for l-tagatose production. Supplied with only 3 mM NAD+, subsequent reaction optimization facilitated the efficient transformation of 100 mM of d-galactitol into l-tagatose with a yield of 90.2 % after 12 h (obtained productivity: 7.61 mM.h-1). Compared with the current chemical and biocatalytic methods, the strategy developed avoids by-product formation and achieves the highest yield of l-tagatose with low costs. It is expected to become a cleaner and more promising route for industrial biosynthesis of l-tagatose.
Collapse
Affiliation(s)
- Wen-Bin Su
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Fei-Long Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xue-Yong Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xiao-Man Fan
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Rui-Jiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China; College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, People's Republic of China.
| |
Collapse
|
4
|
Rai SK, Kumar V, Yadav SK. Development of recyclable magnetic cross-linked enzyme aggregates for the synthesis of high value rare sugar d-tagatose in aqueous phase catalysis. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02397c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, a high value rare sugar d-tagatose was synthesized using recyclable magnetic catalysts.
Collapse
Affiliation(s)
- Shushil Kumar Rai
- Center of Innovative and Applied Bioprocessing (CIAB)
- Mohali 140306
- India
- Dept. of Microbial Biotechnology
- Panjab University
| | - Varun Kumar
- Center of Innovative and Applied Bioprocessing (CIAB)
- Mohali 140306
- India
| | - Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB)
- Mohali 140306
- India
- Dept. of Microbial Biotechnology
- Panjab University
| |
Collapse
|
5
|
Biochemical Characterization of Heat-Tolerant Recombinant L-Arabinose Isomerase from Enterococcus faecium DBFIQ E36 Strain with Feasible Applications in D-Tagatose Production. Mol Biotechnol 2019; 61:385-399. [PMID: 30919326 DOI: 10.1007/s12033-019-00161-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
D-Tagatose is a ketohexose, which presents unique properties as a low-calorie functional sweetener possessing a sweet flavor profile similar to D-sucrose and having no aftertaste. Considered a generally recognized as safe (GRAS) substance by FAO/WHO, D-tagatose can be used as an intermediate for the synthesis of other optically active compounds as well as an additive in detergent, cosmetic, and pharmaceutical formulations. This study reports important features for L-arabinose isomerase (EC 5.3.1.4) (L-AI) use in industry. We describe arabinose (araA) gene virulence analysis, gene isolation, sequencing, cloning, and heterologous overexpression of L-AI from the food-grade GRAS bacterium Enterococcus faecium DBFIQ E36 in Escherichia coli and assess biochemical properties of this recombinant enzyme. Recombinant L-AI (rL-AI) was one-step purified to homogeneity by Ni2+-agarose resin affinity chromatography and biochemical characterization revealed low identity with both thermophilic and mesophilic L-AIs but high degree of conservation in residues involved in substrate recognition. Optimal conditions for rL-AI activity were 50 °C, pH 5.5, and 0.3 mM Mn2+, exhibiting a low cofactor concentration requirement and an acidic optimum pH. Half-life at 45 °C and 50 °C were 1427 h and 11 h, respectively, and 21.5 h and 39.5 h at pH 4.5 and 5.6, respectively, showing the high stability of the enzyme in the presence of a metallic cofactor. Bioconversion yield for D-tagatose biosynthesis was 45% at 50 °C after 48 h. These properties highlight the technological potential of E. faecium rL-AI as biocatalyst for D-tagatose production.
Collapse
|
6
|
Roy S, Chikkerur J, Roy SC, Dhali A, Kolte AP, Sridhar M, Samanta AK. Tagatose as a Potential Nutraceutical: Production, Properties, Biological Roles, and Applications. J Food Sci 2018; 83:2699-2709. [PMID: 30334250 DOI: 10.1111/1750-3841.14358] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/29/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
Abstract
Nutraceuticals are gaining importance owing to their potential applications in numerous sectors including food and feed industries. Among the emerging nutraceuticals, d-tagatose occupies a significant niche because of its low calorific value, antidiabetic property and growth promoting effects on beneficial gut bacteria. As d-tagatose is present in minute quantities in naturally occurring food substances, it is produced mainly by chemical or biological means. Recently, attempts were made for bio-production of d-tagatose using l-arabinose isomerase enzyme to overcome the challenges of chemical process of production. Applications of d-tagatose for maintaining health and wellbeing are increasing due to growing consumer awareness and apprehension against modern therapeutic agents. This review outlines the current status on d-tagatose, particularly its production, properties, biological role, applications, and the future perspectives.
Collapse
Affiliation(s)
- Sohini Roy
- Jain Univ., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Jayaram Chikkerur
- Jain Univ., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Sudhir Chandra Roy
- Molecular Biology Unit, ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Arindam Dhali
- Omics Lab., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Atul Puroshtam Kolte
- Omics Lab., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Manpal Sridhar
- BE & ES Div., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Ashis Kumar Samanta
- Feed Additives & Nutraceuticals Lab., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| |
Collapse
|
7
|
Towards efficient enzymatic conversion of D-galactose to D-tagatose: purification and characterization of L-arabinose isomerase from Lactobacillus brevis. Bioprocess Biosyst Eng 2018; 42:107-116. [PMID: 30251190 DOI: 10.1007/s00449-018-2018-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
L-arabinose isomerase (L-AI) (EC 5. 3. 1. 4. L-AI) that mediates the isomerization of D-galactose to D-tagatose was isolated from Lactobacillus brevis (MF 465792), and was further purified and characterized. Pure enzyme with molecular weight of 60.1 kDa was successfully obtained after the purification using Native-PAGE gel extraction method, which was a monomer in solution. The L-AI was found to be stable at 45-75 °C, and at pH 7.0-9.0. Its optimum temperature and pH was determined as 65 °C and 7.0, respectively. Besides, we found that Ca2+, Cu2+, and Ba2+ ions inhibited the enzyme activity, whereas the enzyme activity was significantly enhanced in the presence of Mg2+, Mn2+, or Co2+ ions. The optimum concentration of Mn2+ and Co2+ was determined to be 1 mM. Furthermore, we characterized the kinetic parameters for L-AI and determined the Km (129 mM) and the Vmax (0.045 mM min- 1) values. Notably, L. brevisL-AI exhibited a high bioconversion yield of 43% from D-galactose to D-tagatose under the optimal condition, and appeared to be a more efficient catalyst compared with other L-AIs from various organisms.
Collapse
|
8
|
Xu W, Zhang W, Zhang T, Jiang B, Mu W. l -arabinose isomerases: Characteristics, modification, and application. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Kim HM, Song Y, Wi SG, Bae HJ. Production of D -tagatose and bioethanol from onion waste by an intergrating bioprocess. J Biotechnol 2017; 260:84-90. [DOI: 10.1016/j.jbiotec.2017.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/06/2017] [Accepted: 09/14/2017] [Indexed: 11/17/2022]
|
10
|
Xu W, Fan C, Zhang T, Jiang B, Mu W. Cloning, Expression, and Characterization of a Novel L-Arabinose Isomerase from the Psychrotolerant Bacterium Pseudoalteromonas haloplanktis. Mol Biotechnol 2017; 58:695-706. [PMID: 27586234 DOI: 10.1007/s12033-016-9969-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
L-Arabinose isomerase (L-AI, EC 5.3.1.4) catalyzes the isomerization between L-arabinose and L-ribulose, and most of the reported ones can also catalyze D-galactose to D-tagatose, except Bacillus subtilis L-AI. In this article, the L-AI from the psychrotolerant bacterium Pseudoalteromonas haloplanktis ATCC 14393 was characterized. The enzyme showed no substrate specificity toward D-galactose, which was similar to B. subtilis L-AI but distinguished from other reported L-AIs. The araA gene encoding the P. haloplanktis L-AI was cloned and overexpressed in E. coli BL21 (DE3). The recombinant enzyme was purified by one-step nickel affinity chromatography . The enzyme displayed the maximal activity at 40 °C and pH 8.0, and showed more than 75 % of maximal activity from pH 7.5-9.0. Metal ion Mn2+ was required as optimum metal cofactor for activity simulation, but it did not play a significant role in thermostability improvement as reported previously. The Michaelis-Menten constant (K m), turnover number (k cat), and catalytic efficiency (k cat/K m) for substrate L-arabinose were measured to be 111.68 mM, 773.30/min, and 6.92/mM/min, respectively. The molecular docking results showed that the active site residues of P. haloplanktis L-AI could only immobilize L-arabinose and recognized it as substrate for isomerization.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chen Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China. .,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
11
|
|
12
|
Abstract
The genus Geobacillus comprises a group of Gram-positive thermophilic bacteria, including obligate aerobes, denitrifiers, and facultative anaerobes that can grow over a range of 45-75°C. Originally classified as group five Bacillus spp., strains of Bacillus stearothermophilus came to prominence as contaminants of canned food and soon became the organism of choice for comparative studies of metabolism and enzymology between mesophiles and thermophiles. More recently, their catabolic versatility, particularly in the degradation of hemicellulose and starch, and rapid growth rates have raised their profile as organisms with potential for second-generation (lignocellulosic) biorefineries for biofuel or chemical production. The continued development of genetic tools to facilitate both fundamental investigation and metabolic engineering is now helping to realize this potential, for both metabolite production and optimized catabolism. In addition, this catabolic versatility provides a range of useful thermostable enzymes for industrial application. A number of genome-sequencing projects have been completed or are underway allowing comparative studies. These reveal a significant amount of genome rearrangement within the genus, the presence of large genomic islands encompassing all the hemicellulose utilization genes and a genomic island incorporating a set of long chain alkane monooxygenase genes. With G+C contents of 45-55%, thermostability appears to derive in part from the ability to synthesize protamine and spermine, which can condense DNA and raise its Tm.
Collapse
|
13
|
Kim BJ, Hong SH, Shin KC, Jo YS, Oh DK. Characterization of a F280N variant of l-arabinose isomerase from Geobacillus thermodenitrificans identified as a d-galactose isomerase. Appl Microbiol Biotechnol 2014; 98:9271-81. [DOI: 10.1007/s00253-014-5827-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
|
14
|
Fan C, Liu K, Zhang T, Zhou L, Xue D, Jiang B, Mu W. Biochemical characterization of a thermostable l-arabinose isomerase from a thermoacidophilic bacterium, Alicyclobacillus hesperidum URH17-3-68. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Li Z, Gao Y, Nakanishi H, Gao X, Cai L. Biosynthesis of rare hexoses using microorganisms and related enzymes. Beilstein J Org Chem 2013; 9:2434-45. [PMID: 24367410 PMCID: PMC3869271 DOI: 10.3762/bjoc.9.281] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/15/2013] [Indexed: 01/06/2023] Open
Abstract
Rare sugars, referred to as monosaccharides and their derivatives that rarely exist in nature, can be applied in many areas ranging from foodstuffs to pharmaceutical and nutrition industry, or as starting materials for various natural products and drug candidates. Unfortunately, an important factor restricting the utilization of rare sugars is their limited availability, resulting from limited synthetic methods. Nowadays, microbial and enzymatic transformations have become a very powerful tool in this field. This article reviews the biosynthesis and enzymatic production of rare ketohexoses, aldohexoses and sugar alcohols (hexitols), including D-tagatose, D-psicose, D-sorbose, L-tagatose, L-fructose, 1-deoxy-L-fructose, D-allose, L-glucose, L-talose, D-gulose, L-galactose, L-fucose, allitol, D-talitol, and L-sorbitol. New systems and robust catalysts resulting from advancements in genomics and bioengineering are also discussed.
Collapse
Affiliation(s)
- Zijie Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yahui Gao
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hideki Nakanishi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaodong Gao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Li Cai
- Division of Mathematics and Science, University of South Carolina Salkehatchie, Walterboro, South Carolina, 29488, USA
| |
Collapse
|