1
|
Hu W, Zhang X, Shen Y, Meng X, Wu Y, Tong P, Li X, Chen H, Gao J. Quantifying allergenic proteins using antibody-based methods or liquid chromatography-mass spectrometry/mass spectrometry: A review about the influence of food matrix, extraction, and sample preparation. Compr Rev Food Sci Food Saf 2024; 23:e70029. [PMID: 39379311 DOI: 10.1111/1541-4337.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Accurate quantification of allergens in food is crucial for ensuring consumer safety. Pretreatment steps directly affect accuracy and efficiency of allergen quantification. We systematically reviewed the latest advances in pretreatment steps for antibody-based methods and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) protein quantification methods in food. For antibody-based methods, the effects induced by food matrix like decreased allergen solubility, epitope masking, and nonspecific binding are of the upmost importance. To mitigate interference from the matrix, effective and proper extraction can be used to obtain the target allergens with a high protein concentration and necessary epitope exposure. Removal of interfering substances, extraction systems (buffers and additives), assistive technologies, and commercial kits were discussed. About LC-MS/MS quantification, the preparation of the target peptides is the crucial step that significantly affects the efficiency and results obtained from the MS detector. The advantages and limitations of each method for pre-purification, enzymatic digestion, and peptide desalting were compared. Additionally, the application characteristics of microfluidic-based pretreatment devices were illustrated to improve the convenience and efficiency of quantification. A promising research direction is the targeted development of pretreatment methods for complex food matrices, such as lipid-based and carbohydrate-based matrices.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yunpeng Shen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Xuanyi Meng
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yong Wu
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Ping Tong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Jinyan Gao
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| |
Collapse
|
2
|
Malila Y, Owolabi IO, Chotanaphuti T, Sakdibhornssup N, Elliott CT, Visessanguan W, Karoonuthaisiri N, Petchkongkaew A. Current challenges of alternative proteins as future foods. NPJ Sci Food 2024; 8:53. [PMID: 39147771 PMCID: PMC11327365 DOI: 10.1038/s41538-024-00291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Global demand for food is expected to nearly double by 2050. Alternative proteins (AP) have been proposed as a sustainable solution to provide food security as natural resources become more depleted. However, the growth and consumer intake of AP remains limited. This review aims to better understand the challenges and environmental impacts of four main AP categories: plant-based, insect-based, microbe-derived, and cultured meat and seafood. The environmental benefits of plant-based and insect-based proteins have been documented but the impacts of microbe-derived proteins and cultured meat have not been fully assessed. The development of alternative products with nutritional and sensory profiles similar to their conventional counterparts remains highly challenging. Furthermore, incomplete safety assessments and a lack of clear regulatory guidelines confuse the food industry and hamper progress. Much still needs to be done to fully support AP utilization within the context of supporting the drive to make the global food system sustainable.
Collapse
Affiliation(s)
- Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khong Luang, Pathum Thani, Thailand.
- International Joint Research Center on Food Security (IJC-FOODSEC), Khong Luang, Pathum Thani, Thailand.
| | - Iyiola O Owolabi
- International Joint Research Center on Food Security (IJC-FOODSEC), Khong Luang, Pathum Thani, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Khong Luang, Pathum Thani, Thailand
| | - Tanai Chotanaphuti
- International Joint Research Center on Food Security (IJC-FOODSEC), Khong Luang, Pathum Thani, Thailand
- Faculty of Biology, University of Cambridge, Cambridge, UK
| | - Napat Sakdibhornssup
- International Joint Research Center on Food Security (IJC-FOODSEC), Khong Luang, Pathum Thani, Thailand
- University of Chicago, Chicago, IL, USA
| | - Christopher T Elliott
- International Joint Research Center on Food Security (IJC-FOODSEC), Khong Luang, Pathum Thani, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Khong Luang, Pathum Thani, Thailand
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, Belfast, UK
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khong Luang, Pathum Thani, Thailand
- International Joint Research Center on Food Security (IJC-FOODSEC), Khong Luang, Pathum Thani, Thailand
| | - Nitsara Karoonuthaisiri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khong Luang, Pathum Thani, Thailand
- International Joint Research Center on Food Security (IJC-FOODSEC), Khong Luang, Pathum Thani, Thailand
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, Belfast, UK
| | - Awanwee Petchkongkaew
- International Joint Research Center on Food Security (IJC-FOODSEC), Khong Luang, Pathum Thani, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Khong Luang, Pathum Thani, Thailand
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, Belfast, UK
| |
Collapse
|
3
|
Pellerin G, Doyen A. Effect of thermal and defatting treatments on the composition, protein profile and structure of house cricket (Acheta domesticus) protein extracts. Food Chem 2024; 448:139149. [PMID: 38555689 DOI: 10.1016/j.foodchem.2024.139149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/27/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
This study investigated the impact of blanching (100 °C, 40 s), defatting method (maceration, Soxhlet) and solvent polarity (hexane, ethanol) on the profile, structure and solubility of house cricket protein extracts. Blanching and Soxhlet using ethanol impacted the protein profile, with a lower content of myosin heavy chain and a higher abundance of low molecular weight proteins (<25 kDa). Moreover, ethanol induced aggregation of non-blanched cricket proteins, with a 13-72% reduction in protein recovery yield. The protein secondary structure of non-blanched extracts was also affected by ethanol with 18% more β-sheets. Furthermore, blanching resulted in a lower protein surface hydrophobicity by a factor of 3 to 7, with no impact of solvent polarity. Finally, the solubility of protein extracts remained >75%, regardless of the blanching and defatting methods. These findings, combined with the evaluation of techno-functional properties, could be used for the development of cricket-based protein ingredients for food formulations.
Collapse
Affiliation(s)
- Geneviève Pellerin
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada.
| | - Alain Doyen
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
4
|
Fu W, Jia X, Liu C, Meng X, Zhang K, Tao S, Xue W. Sourdough yeast-bacteria interactions results in reduced immunogenicity by increasing depolymerization and hydrolysis of gluten. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Amalia U, Shimizu Y, Saeki H. Variation in shrimp tropomyosin allergenicity during the production of Terasi, an Indonesian fermented shrimp paste. Food Chem 2023; 398:133876. [DOI: 10.1016/j.foodchem.2022.133876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/07/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022]
|
6
|
Dong X, Raghavan V. A comprehensive overview of emerging processing techniques and detection methods for seafood allergens. Compr Rev Food Sci Food Saf 2022; 21:3540-3557. [PMID: 35676763 DOI: 10.1111/1541-4337.12987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
Abstract
Seafood is rich in nutrients and plays a significant role in human health. However, seafood allergy is a worldwide health issue by inducing adverse reactions ranging from mild to life-threatening in seafood-allergic individuals. Seafood consists of fish and shellfish, with the major allergens such as parvalbumin and tropomyosin, respectively. In the food industry, effective processing techniques are applied to seafood allergens to lower the allergenicity of seafood products. Also, sensitive and rapid allergen-detection methods are developed to identify and assess allergenic ingredients at varying times. This review paper provides an overview of recent advances in processing techniques (thermal, nonthermal, combined [hybrid] treatments) and main allergen-detection methods for seafood products. The article starts with the seafood consumption and classification, proceeding with the prevalence and symptoms of seafood allergy, followed by a description of biochemical characteristics of the major seafood allergens. As the topic is multidisciplinary in scope, it is intended to provide information for further research essential for food security and safety.
Collapse
Affiliation(s)
- Xin Dong
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
7
|
Dong X, Raghavan V. Recent advances of selected novel processing techniques on shrimp allergenicity: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
De Marchi L, Wangorsch A, Zoccatelli G. Allergens from Edible Insects: Cross-reactivity and Effects of Processing. Curr Allergy Asthma Rep 2021; 21:35. [PMID: 34056688 PMCID: PMC8165055 DOI: 10.1007/s11882-021-01012-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW The recent introduction of edible insects in Western countries has raised concerns about their safety in terms of allergenic reactions. The characterization of insect allergens, the sensitization and cross-reactivity mechanisms, and the effects of food processing represent crucial information for risk assessment. RECENT FINDINGS Allergic reactions to different insects and cross-reactivity with crustacean and inhalant allergens have been described, with the identification of new IgE-binding proteins besides well-known pan-allergens. Depending on the route of sensitization, different potential allergens seem to be involved. Food processing may affect the solubility and the immunoreactivity of insect allergens, with results depending on species and type of proteins. Chemical/enzymatic hydrolysis, in some cases, abolishes immunoreactivity. More studies based on subjects with a confirmed insect allergy are necessary to identify major and minor allergens and the role of the route of sensitization. The effects of processing need to be further investigated to assess the risk associated with the ingestion of insect-containing food products.
Collapse
Affiliation(s)
- Laura De Marchi
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | | |
Collapse
|
9
|
Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens? Clin Rev Allergy Immunol 2021; 62:1-36. [DOI: 10.1007/s12016-020-08826-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/31/2022]
|
10
|
Liu M, Han TJ, Huan F, Li MS, Xia F, Yang Y, Wu YH, Chen GX, Cao MJ, Liu GM. Effects of thermal processing on the allergenicity, structure, and critical epitope amino acids of crab tropomyosin. Food Funct 2021; 12:2032-2043. [DOI: 10.1039/d0fo02869j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food processing can change the structure and immunoreactivity of purified allergens, but the effect of food processing on the immunoreactivity of the processed and purified allergen is still poorly understood.
Collapse
|
11
|
Identification of pyruvate kinase 2 as a possible crab allergen and analysis of allergenic proteins in crabs consumed in Taiwan. Food Chem 2019; 289:413-418. [PMID: 30955631 DOI: 10.1016/j.foodchem.2019.03.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 11/20/2022]
Abstract
In Taiwan, crab is one of the main causes for food allergy. Several proteins are recognized as crustacean allergens, and tropomyosin is known to be the major one. However, sensitization patterns of Taiwanese patients to crustacean allergens remain unclear. Therefore, we analyzed the specific-IgE binding ability of crucifix crab (Charybdis feriatus) allergens by western blot using patients' sera. In particular, we found a 56 kDa protein in crucifix crab reacted with specific-IgEs in patients' sera, and we further identified the protein as a novel crab allergen pyruvate kinase 2. Additionally, little is known about tropomyosin contents in crabs consumed in Taiwan. Thus, we also quantified the levels of tropomyosin by using enzyme-linked immunosorbent assay (ELISA) among raw and cooked crab species. Our results showed tropomyosin levels varied depending on crab species. In summary, these findings improve the understanding of crustacean allergens and contribute to the clinical diagnosis of crustacean allergies.
Collapse
|
12
|
Faisal M, Vasiljevic T, Donkor ON. A review on methodologies for extraction, identification and quantification of allergenic proteins in prawns. Food Res Int 2019; 121:307-318. [PMID: 31108753 DOI: 10.1016/j.foodres.2019.03.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/13/2019] [Accepted: 03/17/2019] [Indexed: 12/26/2022]
Abstract
Prawn allergy is one of the most common food-borne allergies and current prevention is by avoidance. This review paper summarised different methodologies for the extraction, identification and quantification of prawn protein allergens, reported in various research studies. Following extraction, allergenic components have been analysed using well-established methodologies, such as SDS-PAGE, Immunoblotting, ELISA, CD Spectroscopy, HPLC, DBPCFC, SPT etc. Moreover, the preference towards Aptamer-based technique for allergenicity analysis has also been highlighted in this review paper. The summary of these methodologies will provide a reference platform for present and future research directions.
Collapse
Affiliation(s)
- M Faisal
- Advanced Food Systems Research Unit, Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.
| | - T Vasiljevic
- Advanced Food Systems Research Unit, Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.
| | - O N Donkor
- Advanced Food Systems Research Unit, Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.
| |
Collapse
|
13
|
Tong WS, Yuen AW, Wai CY, Leung NY, Chu KH, Leung PS. Diagnosis of fish and shellfish allergies. J Asthma Allergy 2018; 11:247-260. [PMID: 30323632 PMCID: PMC6181092 DOI: 10.2147/jaa.s142476] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Seafood allergy is a hypersensitive disorder with increasing prevalence worldwide. Effective and accurate diagnostic workup for seafood allergy is essential for clinicians and patients. Parvalbumin and tropomyosin are the most common fish and shellfish allergens, respectively. The diagnosis of seafood allergies is complicated by cross-reactivity among fish allergens and between shellfish allergens and other arthropods. Current clinical diagnosis of seafood allergy is a complex algorithm that includes clinical assessment, skin prick test, specific IgE measurement, and oral food challenges. Emerging diagnostic strategies, such as component-resolved diagnosis (CRD), which uses single allergenic components for assessment of epitope specific IgE, can provide critical information in predicting individualized sensitization patterns and risk of severe allergic reactions. Further understanding of the molecular identities and characteristics of seafood allergens can advance the development of CRD and lead to more precise diagnosis and improved clinical management of seafood allergies.
Collapse
Affiliation(s)
- Wai Sze Tong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Agatha Wt Yuen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Christine Yy Wai
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China,
| | - Nicki Yh Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China,
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Patrick Sc Leung
- Division of Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California Davis, Davis, CA, USA,
| |
Collapse
|
14
|
Faisal M, Vasiljevic T, Donkor ON. Effects of selected processing treatments on antigenicity of banana prawn (Fenneropenaeus merguiensis
) tropomyosin. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13922] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Md Faisal
- Advanced Food Systems Research Unit; Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine; Victoria University; Werribee Campus, PO Box 14428 Melbourne Vic. 8001 Australia
| | - Todor Vasiljevic
- Advanced Food Systems Research Unit; Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine; Victoria University; Werribee Campus, PO Box 14428 Melbourne Vic. 8001 Australia
| | - Osaana N. Donkor
- Advanced Food Systems Research Unit; Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine; Victoria University; Werribee Campus, PO Box 14428 Melbourne Vic. 8001 Australia
| |
Collapse
|
15
|
Khan MU, Ahmed I, Lin H, Li Z, Costa J, Mafra I, Chen Y, Wu YN. Potential efficacy of processing technologies for mitigating crustacean allergenicity. Crit Rev Food Sci Nutr 2018; 59:2807-2830. [DOI: 10.1080/10408398.2018.1471658] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - Yan Chen
- China National Center for Food Safety Risk Assessment, Chaoyang, Beijing, P.R. China
| | - Yong-Ning Wu
- China National Center for Food Safety Risk Assessment, Chaoyang, Beijing, P.R. China
| |
Collapse
|
16
|
Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol Immunol 2018; 100:28-57. [PMID: 29858102 DOI: 10.1016/j.molimm.2018.04.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
Seafood refers to several distinct groups of edible aquatic animals including fish, crustacean, and mollusc. The two invertebrate groups of crustacean and mollusc are, for culinary reasons, often combined as shellfish but belong to two very different phyla. The evolutionary and taxonomic diversity of the various consumed seafood species poses a challenge in the identification and characterisation of the major and minor allergens critical for reliable diagnostics and therapeutic treatments. Many allergenic proteins are very different between these groups; however, some pan-allergens, including parvalbumin, tropomyosin and arginine kinase, seem to induce immunological and clinical cross-reactivity. This extensive review details the advances in the bio-molecular characterisation of 20 allergenic proteins within the three distinct seafood groups; fish, crustacean and molluscs. Furthermore, the structural and biochemical properties of the major allergens are described to highlight the immunological and subsequent clinical cross-reactivities. A comprehensive list of purified and recombinant allergens is provided, and the applications of component-resolved diagnostics and current therapeutic developments are discussed.
Collapse
|
17
|
Chizoba Ekezie FG, Cheng JH, Sun DW. Effects of nonthermal food processing technologies on food allergens: A review of recent research advances. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.01.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Jarupalee T, Chatchatee P, Komolpis K, Suratannon N, Roytrakul S, Yingchutrakul Y, Yimchuen W, Butta P, Jacquet A, Palaga T. Detecting Allergens From Black Tiger Shrimp Penaeus monodon That Can Bind and Cross-link IgE by ELISA, Western Blot, and a Humanized Rat Basophilic Leukemia Reporter Cell Line RS-ATL8. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:62-76. [PMID: 29178679 PMCID: PMC5705486 DOI: 10.4168/aair.2018.10.1.62] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 11/30/2022]
Abstract
Background Black tiger shrimp Penaeus monodon is one of the common causes of shellfish allergy that is increasing worldwide. One of the important problems in the management of shellfish allergy is the lack of accurate diagnostic assay because the biological and immunological properties of allergens in black tiger shrimp have not been well characterized. This study aims to detect proteins with the ability to bind and cross-link immunoglobulin E (IgE) from black tiger shrimp by enzyme-linked immunosorbent assay (ELISA), Western blot, and a humanized rat basophilic leukemia reporter cell line RS-ATL8. Methods Sera from shrimp allergic subjects were subjected to ELISA and Western blots using raw or cooked shrimp extract as antigens. Pooled sera were used to sensitize the RS-ATL8 reporter cell line and cells were activated by shrimp extract. Eluted protein extracts separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were tested on the RS-ATL8 cell line and subjected to mass spectrometry to identify potential candidate allergens. Results Allergic sera reacted stronger to raw shrimp extract than cooked shrimp extract (P=0.009). Western blot demonstrated that major IgE reactivity protein bands were at 32–39 kDa and 91–230 kDa in both raw and cooked shrimp extracts. The eluted protein bands at the molecular weight of 38 and 115 kDa from raw shrimp extract induced IgE cross-linking as assayed by the RS-ATL8 cell line. These protein bands were subjected to mass spectrometry for analysis. Ubiquitin-activating enzyme and crustacyanin were identified as potential candidate novel shrimp allergens. Conclusions The RS-ATL8 reporter cell line can be used to identify potential new shrimp allergens that can functionally cross-link IgE and induce mast cell degranulation.
Collapse
Affiliation(s)
- Thanyapat Jarupalee
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pantipa Chatchatee
- Allergy&Immunology Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kittinan Komolpis
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Narissara Suratannon
- Allergy&Immunology Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Wanaporn Yimchuen
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Patcharavadee Butta
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Alain Jacquet
- Chula-Vaccine Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
19
|
Allergenicity of vertebrate tropomyosins: Challenging an immunological dogma. Allergol Immunopathol (Madr) 2017; 45:297-304. [PMID: 27789064 DOI: 10.1016/j.aller.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/01/2016] [Indexed: 11/23/2022]
Abstract
With the exception of tilapia tropomyosin, other anecdotic reports of tropomyosin recognition of vertebrate origin are generally not accompanied by clinical significance and a dogmatic idea is generally accepted about the inexistence of allergenicity of vertebrate tropomyosins, based mainly on sequence similarity evaluations with human tropomyosins. Recently, a specific work-up of a tropomyosin sensitised patient with seafood allergy, demonstrated that the IgE-recognition of tropomyosin from different fish species can be clinically relevant. We hypothesise that some vertebrate tropomyosins could be relevant allergens. The hypothesis is based on the molecular evolution of the proteins and it was tested by in silico methods. Fish, which are primitive vertebrates, could have tropomyosins similar to those of invertebrates. If the hypothesis is confirmed, tropomyosin should be included in different allergy diagnosis tools to improve the medical protocols and management of patients with digestive or cutaneous symptoms after fish intake.
Collapse
|
20
|
Liu Y, Li Z, Pavase T, Li Z, Liu Y, Wang N. Evaluation of electron beam irradiation to reduce the IgE binding capacity of frozen shrimp tropomyosin. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1251394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Yixuan Liu
- Food Safety Laboratory, Ocean University of China, Qingdao, People’s Republic of China
| | - Zhaojie Li
- Weihai Entry Exit Inspection and Quarantine Bureau, Weihai, People’s Republic of China
| | - Tushar Pavase
- Food Safety Laboratory, Ocean University of China, Qingdao, People’s Republic of China
| | - Zhenxing Li
- Food Safety Laboratory, Ocean University of China, Qingdao, People’s Republic of China
| | - Yumin Liu
- Weihai Entry Exit Inspection and Quarantine Bureau, Weihai, People’s Republic of China
| | - Ning Wang
- Food Safety Laboratory, Ocean University of China, Qingdao, People’s Republic of China
| |
Collapse
|
21
|
Pedrosa M, Boyano-Martínez T, García-Ara C, Quirce S. Shellfish Allergy: a Comprehensive Review. Clin Rev Allergy Immunol 2016; 49:203-16. [PMID: 24870065 DOI: 10.1007/s12016-014-8429-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Shellfish allergy is of increasing concern, as its prevalence has risen in recent years. Many advances have been made in allergen characterization. B cell epitopes in the major allergen tropomyosin have been characterized. In addition to tropomyosin, arginine kinase, sarcoplasmic calcium-binding protein, and myosin light chain have recently been reported in shellfish. All are proteins that play a role in muscular contraction. Additional allergens such as hemocyanin have also been described. The effect of processing methods on these allergens has been studied, revealing thermal stability and resistance to peptic digestion in some cases. Modifications after Maillard reactions have also been addressed, although in some cases with conflicting results. In recent years, new hypoallergenic molecules have been developed, which constitute a new therapeutic approach to allergic disorders. A recombinant hypoallergenic tropomyosin has been developed, which opens a new avenue in the treatment of shellfish allergy. Cross-reactivity with species that are not closely related is common in shellfish-allergic patients, as many of shellfish allergens are widely distributed panallergens in invertebrates. Cross-reactivity with house dust mites is well known, but other species can also be involved in this phenomenon.
Collapse
Affiliation(s)
- María Pedrosa
- Allergy Department, Hospital La Paz Institute for Health Research (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Teresa Boyano-Martínez
- Allergy Department, Hospital La Paz Institute for Health Research (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Carmen García-Ara
- Allergy Department, Hospital La Paz Institute for Health Research (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Santiago Quirce
- Allergy Department, Hospital La Paz Institute for Health Research (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain
| |
Collapse
|
22
|
Effect of processing on conformational changes of food proteins related to allergenicity. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.01.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Affiliation(s)
- Kyoung Yong Jeong
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Broekman H, Knulst A, den Hartog Jager S, Monteleone F, Gaspari M, de Jong G, Houben G, Verhoeckx K. Effect of thermal processing on mealworm allergenicity. Mol Nutr Food Res 2015; 59:1855-64. [PMID: 26097070 DOI: 10.1002/mnfr.201500138] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/28/2015] [Accepted: 06/03/2015] [Indexed: 11/09/2022]
Abstract
SCOPE The growing world population requires the exploration of new sustainable protein sources to ensure food security. Insects such as mealworm are promising candidates. For safety reasons, a risk assessment, including allergy risks, is needed. Since allergenicity can be influenced by thermal processing, it is highly important to take this into account. METHODS AND RESULTS Fresh mealworm was heat processed and extracted by a sequential extraction method using in succession Tris, urea, and a combined SDS/DTT buffer. Extracts were tested using immunoblot, basophil activation test and skin prick test in 15 shrimp allergic patients, previously indicated as population at risk for mealworm allergy. Immunoblots showed a difference in IgE binding between processed and unprocessed mealworm extracts. However, this was due to change in solubility. Some allergens were soluble in urea buffer, but became more soluble in Tris buffer and vice versa. IgE binding was seen for all extracts in blot and basophil activation test. The results from 13 skin prick tests showed a skin reaction similar between processed and unprocessed mealworm. CONCLUSION Thermal processing did not lower allergenicity but clearly changed solubility of mealworm allergens. A sequential extraction method allowed for assessment of a broader protein panel.
Collapse
Affiliation(s)
- Henrike Broekman
- Department of Dermatology/Allergology, University Medical Centre Utrecht (UMCU), Utrecht, The Netherlands
| | - André Knulst
- Department of Dermatology/Allergology, University Medical Centre Utrecht (UMCU), Utrecht, The Netherlands
| | - Stans den Hartog Jager
- Department of Dermatology/Allergology, University Medical Centre Utrecht (UMCU), Utrecht, The Netherlands
| | - Francesca Monteleone
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia" di Catanzaro, Catanzaro, Italy
| | - Marco Gaspari
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia" di Catanzaro, Catanzaro, Italy
| | | | - Geert Houben
- Department of Dermatology/Allergology, University Medical Centre Utrecht (UMCU), Utrecht, The Netherlands.,TNO, Zeist, the Netherlands
| | - Kitty Verhoeckx
- Department of Dermatology/Allergology, University Medical Centre Utrecht (UMCU), Utrecht, The Netherlands.,TNO, Zeist, the Netherlands
| |
Collapse
|
25
|
Impact of the vulcanization process on the structural characteristics and IgE recognition of two allergens, Hev b 2 and Hev b 6.02, extracted from latex surgical gloves. Mol Immunol 2015; 65:250-8. [DOI: 10.1016/j.molimm.2015.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/17/2014] [Accepted: 01/18/2015] [Indexed: 11/30/2022]
|
26
|
Usui M, Harada A, Yasumoto S, Sugiura Y, Nishidai A, Ikarashi M, Takaba H, Miyasaki T, Azakami H, Kondo M. Relationship between the risk for a shrimp allergy and freshness or cooking. Biosci Biotechnol Biochem 2015; 79:1698-701. [PMID: 25966963 DOI: 10.1080/09168451.2015.1045830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Tropomyosins are defined as risk factors for shrimp allergy. However, their concentration in different preparations has not been clarified. We quantified the tropomyosin concentration in shrimp meat, which was cooked using several methods or was stored under various conditions. The results demonstrated that shrimp meat from various preparations and storage conditions maintained tropomyosin concentrations that were sufficient to cause food allergies.
Collapse
Affiliation(s)
- Masakatsu Usui
- a Department of Food Science and Technology , National Fisheries University , Shimonoseki , Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Phiriyangkul P, Srinroch C, Srisomsap C, Chokchaichamnankit D, Punyarit P. Effect of Food Thermal Processing on Allergenicity Proteins in Bombay Locust (Patanga Succincta). ACTA ACUST UNITED AC 2015. [DOI: 10.18178/ijfe.1.1.23-28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Scientific Opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3894] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|