1
|
Ponphaiboon J, Krongrawa W, Aung WW, Chinatangkul N, Limmatvapirat S, Limmatvapirat C. Advances in Natural Product Extraction Techniques, Electrospun Fiber Fabrication, and the Integration of Experimental Design: A Comprehensive Review. Molecules 2023; 28:5163. [PMID: 37446825 DOI: 10.3390/molecules28135163] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The present review explores the growing interest in the techniques employed for extracting natural products. It emphasizes the limitations of conventional extraction methods and introduces superior non-conventional alternatives, particularly ultrasound-assisted extraction. Characterization and quantification of bioactive constituents through chromatography coupled with spectroscopy are recommended, while the importance of method development and validation for biomarker quantification is underscored. At present, electrospun fibers provide a versatile platform for incorporating bioactive extracts and have extensive potential in diverse fields due to their unique structural and functional characteristics. Thus, the review also highlights the fabrication of electrospun fibers containing bioactive extracts. The preparation of biologically active extracts under optimal conditions, including the selection of safe solvents and cost-effective equipment, holds promising potential in the pharmaceutical, food, and cosmetic industries. Integration of experimental design into extraction procedures and formulation development is essential for the efficient production of health products. The review explores potential applications of encapsulating natural product extracts in electrospun fibers, such as wound healing, antibacterial activity, and antioxidant properties, while acknowledging the need for further exploration and optimization in this field. The findings discussed in this review are anticipated to serve as a valuable resource for the processing industry, enabling the utilization of affordable and environmentally friendly, natural, and raw materials.
Collapse
Affiliation(s)
- Juthaporn Ponphaiboon
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wantanwa Krongrawa
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wah Wah Aung
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nawinda Chinatangkul
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Faculty of Pharmacy, Siam University, Bangkok 10160, Thailand
| | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chutima Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
2
|
Yeh CH, Shen ZQ, Wang TW, Kao CH, Teng YC, Yeh TK, Lu CK, Tsai TF. Hesperetin promotes longevity and delays aging via activation of Cisd2 in naturally aged mice. J Biomed Sci 2022; 29:53. [PMID: 35871686 PMCID: PMC9310407 DOI: 10.1186/s12929-022-00838-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
The human CISD2 gene is located within a longevity region mapped on chromosome 4q. In mice, Cisd2 levels decrease during natural aging and genetic studies have shown that a high level of Cisd2 prolongs mouse lifespan and healthspan. Here, we evaluate the feasibility of using a Cisd2 activator as an effective way of delaying aging.
Methods
Hesperetin was identified as a promising Cisd2 activator by herb compound library screening. Hesperetin has no detectable toxicity based on in vitro and in vivo models. Naturally aged mice fed dietary hesperetin were used to investigate the effect of this Cisd2 activator on lifespan prolongation and the amelioration of age-related structural defects and functional decline. Tissue-specific Cisd2 knockout mice were used to study the Cisd2-dependent anti-aging effects of hesperetin. RNA sequencing was used to explore the biological effects of hesperetin on aging.
Results
Three discoveries are pinpointed. Firstly, hesperetin, a promising Cisd2 activator, when orally administered late in life, enhances Cisd2 expression and prolongs healthspan in old mice. Secondly, hesperetin functions mainly in a Cisd2-dependent manner to ameliorate age-related metabolic decline, body composition changes, glucose dysregulation, and organ senescence. Finally, a youthful transcriptome pattern is regained after hesperetin treatment during old age.
Conclusions
Our findings indicate that a Cisd2 activator, hesperetin, represents a promising and broadly effective translational approach to slowing down aging and promoting longevity via the activation of Cisd2.
Collapse
|
3
|
Alguacil A, Scalambra F, Romerosa A. Insights into the κ-P,N Coordination of 1,3,5-Triaza-7-phosphaadamantane and Derivatives: κ-P,N-Heterometallic Complexes and a 15N Nuclear Magnetic Resonance Survey. Inorg Chem 2022; 61:5779-5791. [PMID: 35378037 PMCID: PMC9019812 DOI: 10.1021/acs.inorgchem.1c03831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Complexes {[(PTA)2CpRu-μ-CN-1κC:2κ2N-RuCp(PTA)2-ZnCl3]}·2DMSO (13) {[ZnCl2(H2O)]-(PTA-1κP:2κ2N)(PTA)CpRu-μ-CN-1κC:2κ2N-RuCp(PTA)(PTA-1κP:2κ2N)-[ZnCl2(H2O)]}Cl (14), [RuCp(HdmoPTA)(PPh3)(PTA)](CF3SO3)2 (20), [RuCp(HdmoPTA)(HPTA)(PPh3)](CF3SO3)3 (21), and [RuCp(dmoPTA)(PPh3)(PTA)](CF3SO3) (22) were obtained
and characterized, and their crystal structure together with that
of the previously published complex 18 is reported. The
behavior of the 1,3,5-triaza-7-phosphatricyclo[3.3.1.13,7]decane (PTA)
and 3,7-dimethyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (dmoPTA)
ligands against protonation and κN-coordination
is discussed, on the basis of 15N nuclear magnetic resonance
data collected on 22 different compounds, including PTA (1), HdmoPTA (7H), and some common derivatives as free
ligands (2–6 and 8), along with mono-
and polymetallic complexes containing PTA and/or HdmoPTA (9–22). 15N detection via 1H–15N heteronuclear multiple bond correlation allowed the construction
of a small library of 15N chemical shifts that shed light
on important features regarding κN-coordination
in PTA and its derivatives. To shed light
on the behavior of the triazaphosphines 1,3,5-triaza-7-phosphatricyclo[3.3.1.13,7]decane
(PTA) and 3,7-dimethyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane
(dmoPTA) upon κN coordination and N protonation, the 15N chemical shifts of 22 compounds, including PTA and a representative
variety of its derivatives, piano-stool complexes, were collected
by 1H−15N heteronuclear multiple bond
correlation nuclear magnetic resonance. New heterometallic complexes
containing PTA were also synthesized and fully characterized.
Collapse
Affiliation(s)
- Andrés Alguacil
- Área de Química Inorgánica-CIESOL, Universidad de Almería, 04120 Almería, Spain
| | - Franco Scalambra
- Área de Química Inorgánica-CIESOL, Universidad de Almería, 04120 Almería, Spain
| | - Antonio Romerosa
- Área de Química Inorgánica-CIESOL, Universidad de Almería, 04120 Almería, Spain
| |
Collapse
|
4
|
NMR and MD Analysis of the Bonding Interaction of Vancomycin with Muramyl Pentapeptide. Int J Mol Sci 2022; 23:ijms23031146. [PMID: 35163070 PMCID: PMC8835396 DOI: 10.3390/ijms23031146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The article describes an NMR spectroscopy study of interactions between vancomycin and a muramyl pentapeptide in two complexes: vancomycin and a native muramyl pentapeptide ended with D-alanine (MPP-D-Ala), and vancomycin and a modified muramyl pentapeptide ended with D-serine (MPP-D-Ser). The measurements were made in a 9:1 mixture of H2O and D2O. The obtained results confirmed the presence of hydrogen bonds previously described in the literature. At the same time, thanks to the pentapeptide model used, we were able to prove the presence of two more hydrogen bonds formed by the side chain amino group of L-lysine and oxygen atoms from the vancomycin carboxyl and amide groups. This type of interaction has not been described before. The existence of these hydrogen bonds was confirmed by the 1H NMR and molecular modeling. The formation of these bonds incurs additional through-space interactions, visible in the NOESY spectrum, between the protons of the L-lysine amino group and a vancomycin-facing hydrogen atom in the benzylic position. The presence of such interactions was also confirmed by molecular dynamics trajectory analysis.
Collapse
|
5
|
Inose K, Tanaka K, Koshino H, Hashimoto M. Cyclopericodiol and new chlorinated melleins isolated from Periconia macrospinosa KT3863. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Buevich AV, Elyashberg ME. Synergistic Combination of CASE Algorithms and DFT Chemical Shift Predictions: A Powerful Approach for Structure Elucidation, Verification, and Revision. JOURNAL OF NATURAL PRODUCTS 2016; 79:3105-3116. [PMID: 28006916 DOI: 10.1021/acs.jnatprod.6b00799] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Structure elucidation of complex natural products and new organic compounds remains a challenging problem. To support this endeavor, CASE (computer-assisted structure elucidation) expert systems were developed. These systems are capable of generating a set of all possible structures consistent with an ensemble of 2D NMR data followed by selection of the most probable structure on the basis of empirical NMR chemical shift prediction. However, in some cases, empirical chemical shift prediction is incapable of distinguishing the correct structure. Herein, we demonstrate for the first time that the combination of CASE and density functional theory (DFT) methods for NMR chemical shift prediction allows the determination of the correct structure even in difficult situations. An expert system, ACD/Structure Elucidator, was used for the CASE analysis. This approach has been tested on three challenging natural products: aquatolide, coniothyrione, and chiral epoxyroussoenone. This work has demonstrated that the proposed synergistic approach is an unbiased, reliable, and very efficient structure verification and de novo structure elucidation method that can be applied to difficult structural problems when other experimental methods would be difficult or impossible to use.
Collapse
Affiliation(s)
- Alexei V Buevich
- Department of Discovery and Preclinical Sciences, Process Research and Development, NMR Structure Elucidation, Merck & Co., Inc. , Kenilworth, New Jersey 07033, United States
| | - Mikhail E Elyashberg
- Advanced Chemistry Development (ACD/Laboratories) , Akademik Bakulev Street 6, 117513 Moscow, Russian Federation
| |
Collapse
|
7
|
|
8
|
Kingston DGI. Modern natural products drug discovery and its relevance to biodiversity conservation. JOURNAL OF NATURAL PRODUCTS 2011; 74:496-511. [PMID: 21138324 PMCID: PMC3061248 DOI: 10.1021/np100550t] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Natural products continue to provide a diverse and unique source of bioactive lead compounds for drug discovery, but maintaining their continued eminence as source compounds is challenging in the face of the changing face of the pharmaceutical industry and the changing nature of biodiversity prospecting brought about by the Convention on Biological Diversity. This review provides an overview of some of these challenges and suggests ways in which they can be addressed so that natural products research can remain a viable and productive route to drug discovery. Results from International Cooperative Biodiversity Groups (ICBGs) working in Madagascar, Panama, and Suriname are used as examples of what can be achieved when biodiversity conservation is linked to drug discovery.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States.
| |
Collapse
|
9
|
Kövér KE, Szilágyi L, Batta G, Uhrín D, Jiménez-Barbero J. Biomolecular Recognition by Oligosaccharides and Glycopeptides: The NMR Point of View. COMPREHENSIVE NATURAL PRODUCTS II 2010:197-246. [DOI: 10.1016/b978-008045382-8.00193-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
10
|
Powers R. NMR metabolomics and drug discovery. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2009; 47 Suppl 1:S2-S11. [PMID: 19504464 DOI: 10.1002/mrc.2461] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
NMR is an integral component of the drug discovery process with applications in lead discovery, validation, and optimization. NMR is routinely used for fragment-based ligand affinity screens, high-resolution protein structure determination, and rapid protein-ligand co-structure modeling. Because of this inherent versatility, NMR is currently making significant contributions in the burgeoning area of metabolomics, where NMR is successfully being used to identify biomarkers for various diseases, to analyze drug toxicity and to determine a drug's in vivo efficacy and selectivity. This review describes advances in NMR-based metabolomics and discusses some recent applications.
Collapse
Affiliation(s)
- Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
11
|
A Systematic NMR Determination of α-D-Glucooligosaccharides, Effect of Linkage Type, Anomeric Configuration and Combination of Different Linkages Type on13C Chemical Shifts for the Determination of Unknown Isomaltooligosaccharides. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.11.2535] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
|
13
|
Chemical Shift Correlations from Hyperpolarized NMR by Off-Resonance Decoupling. Anal Chem 2008; 80:5794-8. [DOI: 10.1021/ac8004567] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Kwan EE, Huang SG. Structural Elucidation with NMR Spectroscopy: Practical Strategies for Organic Chemists. European J Org Chem 2008. [DOI: 10.1002/ejoc.200700966] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Eugene E. Kwan
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA, Fax: +1‐617‐495‐1460
| | - Shaw G. Huang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA, Fax: +1‐617‐495‐1460
| |
Collapse
|
15
|
Martin GE, Hilton BD, Irish PA, Blinov KA, Williams AJ. Using unsymmetrical indirect covariance processing to calculate GHSQC-COSY spectra. JOURNAL OF NATURAL PRODUCTS 2007; 70:1393-6. [PMID: 17691750 DOI: 10.1021/np070221j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
GHSQC-TOCSY experiments allow sorting of proton-proton connectivity information as a function of (13)C chemical shift. GHSQC-TOCSY is a relatively insensitive 2D NMR experiment. Given two coherence transfer experiments, A --> B and A --> C, it is possible to indirectly determine B <--> C. Unsymmetrical indirect covariance processing of a (1)H- (13)C GHSQC and a GCOSY spectrum afforded a GHSQC-COSY spectrum, with an information content analogous to a GHSQC-TOCSY experiment. However, GHSQC-TOCSY is of significantly lower sensitivity and the data require considerably more time to acquire than either of the component experiments. Investigators needing access to GHSQC-TOCSY type data can, in principle, access it from more readily acquired 2D NMR data. Strychnine ( 1) was used as a model compound to illustrate this capability.
Collapse
Affiliation(s)
- Gary E Martin
- Schering-Plough Research Institute, Summit, New Jersey 07901, USA.
| | | | | | | | | |
Collapse
|