1
|
Olaniyi OO, Oriade B, Lawal OT, Ayodeji AO, Olorunfemi YO, Igbe FO. Purification and biochemical characterization of pullulanase produced from Bacillus sp. modified by ethyl-methyl sulfonate for improved applications. Prep Biochem Biotechnol 2024; 54:455-469. [PMID: 37587838 DOI: 10.1080/10826068.2023.2245884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Strain improvement via chemical mutagen could impart traits with better enzyme production or improved characteristics. The present study sought to investigate the physicochemical properties of pullulanase produced from the wild Bacillus sp and the mutant. The pullulanases produced from the wild and the mutant Bacillus sp. (obtained via induction with ethyl methyl sulfonate) were purified in a-three step purification procedure and were also characterized. The wild and mutant pullulanases, which have molecular masses of 40 and 43.23 kDa, showed yields of 2.3% with 6.0-fold purification and 2.0% with 5.0-fold purification, respectively, and were most active at 50 and 40 °C and pH 7 and 8, respectively. The highest stability of the wild and mutant was between 40 and 50 °C after 1 h, although the mutant retained greater enzymatic activity between pH 6 and 9 than the wild. The mutant had a decreased Km of 0.03 mM as opposed to the wild type of 1.6 mM. In comparison to the wild, the mutant demonstrated a better capacity for tolerating metal ions and chelating agents. These exceptional characteristics of the mutant pullulanase may have been caused by a single mutation, which could improve its utility in industrial and commercial applications.
Collapse
Affiliation(s)
- Oladipo O Olaniyi
- Microbiology Department, Federal University of Technology, Akure, Nigeria
| | - Blessing Oriade
- Microbiology Department, Federal University of Technology, Akure, Nigeria
| | - Olusola T Lawal
- Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Adeyemi O Ayodeji
- Department of Biological Sciences, Joseph Ayo-Babalola University, Arakeji, Nigeria
| | | | - Festus O Igbe
- Biochemistry Department, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
2
|
Abbas Bukhari D, Bibi Z, Ullah A, Rehman A. Isolation, characterization, and cloning of thermostable pullulanase from Geobacillus stearothermophilus ADM-11. Saudi J Biol Sci 2024; 31:103901. [PMID: 38234990 PMCID: PMC10792974 DOI: 10.1016/j.sjbs.2023.103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
This study aimed to identify thermo-stable pullulanase-producing bacteria in soil samples of potato fields and food-producing companies. Pullulan agar medium was used to screen 17 bacterial strains, which were incubated at 65 °C. The isolate with the maximum activity (375U/ml) was selected and recognized as Geobacillus stearothermophilus ADM-11 by morphological, biochemical characterization, and 16S rRNA gene sequencing. The pullulanase production required optimum pH of 7 and temperature of 75 °C, respectively. The electrophoresis of purified pullulanase on SDS-polyacrylamide gel revealed 83 kDa of a molecular weight that is active at 70 °C and pH 7.0. It was also stable at 90 °C but its activity was decreased by 10 % at 100 °C. The action of pullulanase was increased and stabilized by Ca+2 among the metal ions. Beta and gamma-cyclodextrins inhibited enzyme activity while ethylenediaminetetraacetate (EDTA) and phenylmethylsulfonyl fluoride (PMSF) have no significant effect on pullulanase activity. A full-length pullulanase gene was amplified from G. stearothermophilus ADM-11 using genomic DNA 2.1 kb of PCR product which was then purified and ligated in the cloning vector pTZ57R using the TA cloning technique. Colony PCR confirmed cloning on the positive clones after the pullulanase gene had been ligated and subjected to restriction digestion. It revealed 74 % similarity with the reported pullulanase gene from Geobacillus sp. 44C. The thermostability of pullulanase and its ability to degrade raw pullulan may therefore have wide-scale applications in starch processing, the detergent business, and new biotechnological applications.
Collapse
Affiliation(s)
| | - Zuhra Bibi
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Arif Ullah
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
3
|
Olaniyi OO, Damilare AO, Lawal OT, Igbe FO. Properties of a neutral, thermally stable and surfactant-tolerant pullulanase from worker termite gut-dwelling Bacillus safensis as potential for industrial applications. Heliyon 2022; 8:e10617. [PMID: 36158107 PMCID: PMC9489966 DOI: 10.1016/j.heliyon.2022.e10617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
The gut of termite has been observed to host communities of bacteria which exhibited pullulan-degrading ability. Bacillus safensis displayed maximum pullulanase (a debranching enzyme) activity and it was therefore selected for production, purification and characterization of pullulanase which was the aim of the study. The crude enzyme obtained from the pullulanase production medium was subjected to ammonium sulphate precipitation, ion exchange and gel-filtration chromatography and the physicochemical properties of the purified was thereafter characterized. A purified pullulanase with the yield of 13% and 24-fold purification was obtained and its homogeneity was established by molecular weight of 42 kDa. The optimum pH 7 and 60 °C were obtained while the enzyme was stable between 40-60 °C and pH 4–5 and 7–8 respectively with significant amount of residual activities recorded. The purified pullulanase was stimulated in the presence of Ca2+, urea and SDS while Al3+, Fe2+, Co2+, Cu2+, Mg2+ and chelating agent, EDTA mildly inhibited the activity of the enzyme in a concentration-dependent manner. The Km and Vmax were found to be 0.324 μmol/ml/min and 6.85 mg/ml respectively. The exceptional physicochemical properties of B. safensis pullulanase could find application in several industrial processes.
Collapse
Affiliation(s)
| | | | - Olusola Tosin Lawal
- Department of Biochemistry, Federal University of Technology, PMB 704, Akure, Nigeria
| | - Festus Omotere Igbe
- Department of Biochemistry, Federal University of Technology, PMB 704, Akure, Nigeria
| |
Collapse
|
4
|
An Alkalothermophilic Amylopullulanase from the Yeast Clavispora lusitaniae ABS7: Purification, Characterization and Potential Application in Laundry Detergent. Catalysts 2021. [DOI: 10.3390/catal11121438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present study, α-amylase and pullulanase from Clavispora lusitaniae ABS7 isolated from wheat seeds were studied. The gel filtration and ion-exchange chromatography revealed the presence of α-amylase and pullulanase activities in the same fraction with yields of 23.88% and 21.11%, respectively. SDS-PAGE showed a single band (75 kDa), which had both α-amylase (independent of Ca2+) and pullulanase (a calcium metalloenzyme) activities. The products of the enzymatic reaction on pullulan were glucose, maltose, and maltotriose, whereas the conversion of starch produced glucose and maltose. The α-amylase and pullulanase had pH optima at 9 and temperature optima at 75 and 80 °C, respectively. After heat treatment at 100 °C for 180 min, the pullulanase retained 42% of its initial activity, while α-amylase maintained only 38.6%. The cations Zn2+, Cu2+, Na+, and Mn2+ increased the α-amylase activity. Other cations Hg2+, Mg2+, and Ca2+ were stimulators of pullulanase. Urea and Tween 80 inhibited both enzymes, whereas EDTA only inhibited pullulanase. In addition, the amylopullulanase retained its activity in the presence of various commercial laundry detergents. The performance of the alcalothermostable enzyme of Clavispora lusitaniae ABS7 qualified it for the industrial use, particularly in detergents, since it had demonstrated an excellent stability and compatibility with the commercial laundry detergents.
Collapse
|
5
|
Gene cloning, expression and biochemical characterization of a new multi-domain, halotolerant and SDS-resistant alkaline pullulanase from Alkalibacterium sp. SL3. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Hashim SO. Starch-Modifying Enzymes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:221-244. [PMID: 30937486 DOI: 10.1007/10_2019_91] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Starch is a carbohydrate polymer found abundantly on earth. It is synthesized in plants as a short-term storage compound for respiration in the leaves and for long-term storage in the tubers, seeds and roots of plants. A wide variety of enzymes modify or convert starch into various products. The classes of enzymes that act on starch include endoamylases, exoamylases, debranching enzymes and transferases. Starch-modifying enzymes of microbial origin are utilized in a wide variety of industrial applications. Alkaline-active amylases are diverse in terms of optimum reaction conditions, substrate and product specificity. Amylases that are active at lower temperatures and alkaline conditions are most suited for detergent formulation. Other notable starch-modifying enzymes from alkaliphiles include maltooligosaccharide-forming amylases and cyclodextrin glycosyltransferases (CGTases), which produce a variety of maltooligosaccharides and cyclodextrins, respectively. Such compounds are used in the food, fine chemical, pharmaceutical and cosmetic industries, among others. Alkaline-active amylases are also applicable in the paper, textile and leather industries and also in bioremediation and alkaline waste water treatment. Their application in these fields is further enhanced through stabilization and improving their specificity and catalytic action by employing nanotechnology and genetic engineering. Graphical Abstract *Alkaline alpha-amylase AmyK from Bacillus sp. KSM-1378. Shirai T, Igarashi K, Ozawa T, Hagihara H, Kobayashi T, Ozaki K, Ito S (2007) Proteins 66:600-610. Source: Protein Data Bank in Europe (PDBe).
Collapse
Affiliation(s)
- Suhaila Omar Hashim
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya.
| |
Collapse
|
7
|
Lu Z, Hu X, Shen P, Wang Q, Zhou Y, Zhang G, Ma Y. A pH-stable, detergent and chelator resistant type I pullulanase from Bacillus pseudofirmus 703 with high catalytic efficiency. Int J Biol Macromol 2018; 109:1302-1310. [DOI: 10.1016/j.ijbiomac.2017.11.139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/27/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
|
8
|
Zebardast Roodi F, Aminzadeh S, Farrokhi N, Karkhane A, Haghbeen K. Cohnella amylopullulanases: Biochemical characterization of two recombinant thermophilic enzymes. PLoS One 2017; 12:e0175013. [PMID: 28394913 PMCID: PMC5386253 DOI: 10.1371/journal.pone.0175013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/20/2017] [Indexed: 11/19/2022] Open
Abstract
Some industries require newer, more efficient recombinant enzymes to accelerate their ongoing biochemical reactions in harsh environments with less replenishment. Thus, the search for native enzymes from extremophiles that are suitable for use under industrial conditions is a permanent challenge for R & D departments. Here and toward such discoveries, two sequences homologous to amylopullulanases (EC 3.2.1.41, GH57) from an endogenous Cohnella sp., [Coh00831 (KP335161; 1998 bp) and Coh01133 (KP335160: 3678 bp)] were identified. The genes were heterologously expressed in E. coli to both determine their type and further characterize their properties. The isolated DNA was PCR amplified with gene specific primers and cloned in pET28a, and the recombinant proteins were expressed in E. coli BL21 (DE3). The temperatures and pH optima of purified recombinants Coh 01133 and Coh 00831 enzymes were 70°C and 8, and 60°C and 6, respectively. These enzymes are stable more than 90% in 60°C and 50°C for 90 min respectively. The major reactions released sugars which could be fractionated by HPLC analysis, from soluble starch were mainly maltose (G2), maltotriose (G3) and maltotetraose (G4). The enzymes hydrolyzed pullulan to maltotriose (G3) only. Enzyme activities for both proteins were improved in the availability of Mn2+, Ba2+, Ca2+, and Mg2+ and reduced in the presence of Fe2+, Li2+, Na2+, Triton X100 and urea. Moreover, Co2+, K+, and Cu2+ had a negative effect only on Coh 01133 enzyme.
Collapse
Affiliation(s)
- Fatemeh Zebardast Roodi
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- * E-mail:
| | - Naser Farrokhi
- Department of Biotechnology Engineering, Faculty of New Technologies Engineering, Shahid Beheshti University G.C., Tehran, Iran
| | - AliAsghar Karkhane
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Kamahldin Haghbeen
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
9
|
Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 2011; 38:769-90. [DOI: 10.1007/s10295-011-0968-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/26/2011] [Indexed: 11/26/2022]
|
10
|
Moubasher H, Wahsh SS, El-Kassem NA. Purification of pullulanase from Aureobasidium pullulans. Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710060068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Malle D, Itoh T, Hashimoto W, Murata K, Utsumi S, Mikami B. Overexpression, purification and preliminary X-ray analysis of pullulanase from Bacillus subtilis strain 168. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:381-4. [PMID: 16582490 PMCID: PMC2222569 DOI: 10.1107/s1744309106007901] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Accepted: 03/04/2006] [Indexed: 11/11/2022]
Abstract
The AmyX gene encoding pullulanase from the common spore-forming bacterium Bacillus subtilis strain 168 was cloned, overexpressed in Escherichia coli, purified and crystallized. The recombinant pullulanase was purified to homogeneity using ammonium sulfate precipitation, hydrophobic chromatography and anion-exchange chromatography, resulting in a specific activity of 24.10 U per milligram of protein. SDS-PAGE analysis showed that the molecular weight of the protein is approximately 81.0 kDa, which is similar to the calculated molecular weight, 81.1 kDa, from its translated cDNA sequence. The k(cat) and K(m) of the purified enzyme with pullulan as substrate were approximately 79 s(-1) and 1.284 mg ml(-1), respectively. X-ray crystallographic analysis of the pullulanase crystal showed that the crystal belongs to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 70.568, b = 127.68, c = 189.25 angstroms. The crystal contains two molecules of pullulanase in the asymmetric unit, with a solvent content of 53.15%. The crystal diffracted to 2.1 angstroms resolution at a synchrotron and is suitable for structure determination.
Collapse
Affiliation(s)
- Dominggus Malle
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takafumi Itoh
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wataru Hashimoto
- Laboratory of Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kousaku Murata
- Laboratory of Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shigeru Utsumi
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Bunzo Mikami
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
- Correspondence e-mail:
| |
Collapse
|
12
|
Horikoshi K. Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 1999; 63:735-50, table of contents. [PMID: 10585964 PMCID: PMC98975 DOI: 10.1128/mmbr.63.4.735-750.1999] [Citation(s) in RCA: 410] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The term "alkaliphile" is used for microorganisms that grow optimally or very well at pH values above 9 but cannot grow or grow only slowly at the near-neutral pH value of 6.5. Alkaliphiles include prokaryotes, eukaryotes, and archaea. Many different taxa are represented among the alkaliphiles, and some of these have been proposed as new taxa. Alkaliphiles can be isolated from normal environments such as garden soil, although viable counts of alkaliphiles are higher in samples from alkaline environments. The cell surface may play a key role in keeping the intracellular pH value in the range between 7 and 8.5, allowing alkaliphiles to thrive in alkaline environments, although adaptation mechanisms have not yet been clarified. Alkaliphiles have made a great impact in industrial applications. Biological detergents contain alkaline enzymes, such as alkaline cellulases and/or alkaline proteases, that have been produced from alkaliphiles. The current proportion of total world enzyme production destined for the laundry detergent market exceeds 60%. Another important application is the industrial production of cyclodextrin by alkaline cyclomaltodextrin glucanotransferase. This enzyme has reduced the production cost and paved the way for cyclodextrin use in large quantities in foodstuffs, chemicals, and pharmaceuticals. It has also been reported that alkali-treated wood pulp could be biologically bleached by xylanases produced by alkaliphiles. Other applications of various aspects of alkaliphiles are also discussed.
Collapse
Affiliation(s)
- K Horikoshi
- Japan Marine Science and Technology Center, Yokosuka, Kanagawa and Toyo University, Kawagoe, Japan.
| |
Collapse
|
13
|
Kim CH, Nashiru O, Ko JH. Purification and biochemical characterization of pullulanase type I from Thermus caldophilus GK-24. FEMS Microbiol Lett 1996; 138:147-52. [PMID: 9026441 DOI: 10.1111/j.1574-6968.1996.tb08148.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A thermostable pullulanase (pullulan 6-glucanohydrolase, EC 3.2.1.41) has been purified to homogeneity from Thermus caldophilus GK-24 by chromatographic methods, including gel-filtration and ion-exchange chromatography. The specific activity of the enzyme was increased 431-fold with a recovery of 13.2%. The purified enzyme was a monomer, M(r) = 65 kDa as estimated by SDS-PAGE and gel filtration. The pI was 6.1. The enzyme was most active at pH 5.5. The activity was maximal at 75 degrees C and stable up to 95 degrees C for 30 min at pH 5.5. The enzyme was stable to incubation from pH 3.5 to pH 8.0 at 4 degrees C for 24 h. The activity of the enzyme was stimulated by Mn2+ and Mg2+ ions. Ni2+, Ca2+, Co2+ ions and EDTA did not inhibit the enzyme activity. The enzyme hydrolyzed the alpha-1,6 linkages of amylopectin, glycogens, alpha, beta-limited dextrin, and pullulan. The enzyme caused the complete hydrolysis of pullulan to maltotriose. The activity was inhibited by alpha-, beta-, or gamma-cyclodextrins. The N-terminal sequence [(AIa-Pro-Gln-(Asp or Tyr)- Asn-Leu-Leu-Xaa-ILe-Gly-Ala(Ser)] showed some similarity to those of bacterial pullulanases.
Collapse
Affiliation(s)
- C H Kim
- Department of Biochemistry and Molecular Biology, College of Oriental Medicine, Dong-Guk University, Kyung-Ju City, Kyung-Pook, South Korea
| | | | | |
Collapse
|
14
|
SOHN CHEONBAE, LEE SANGMI, KIM MYUNGHEE, KO JEONGHEON, KIM KYOUNGSOOK, CHANG JIEUN, AHN YONGKEUN, KIM CHEORLHO. Purification and Characterization of ?-amylase from Bacillus polymyxa No. 26-1. J Food Sci 1996. [DOI: 10.1111/j.1365-2621.1996.tb14767.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Kim CH, Kim YS. Substrate specificity and detailed characterization of a bifunctional amylase-pullulanase enzyme from Bacillus circulans F-2 having two different active sites on one polypeptide. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:687-93. [PMID: 7532585 DOI: 10.1111/j.1432-1033.1995.tb20189.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bacillus circulans F-2 amylase-pullulanase enzyme (APE) displayed dual activity with respect to glycosidic bond cleavage. The enzyme was active on alpha-1,6 bonds in pullulan, amylopectin, and glycogen, while it showed alpha-1,4 activity against malto-oligosaccharides, amylose, amylopectin, and soluble starch, but not pullulan. Kinetic analysis of the purified enzyme in a system which contained both pullulan and amylose as two competing substrates was used to distinguish the dual specificity of the enzyme from the single-substrate specificity known for pullulanases and alpha-amylases. Enzyme activities were inhibited by some metal ions, and by metal-chelating agents with a different mode. The enzyme-inhibitory results of amylase and pullulanase with Hg2+ and Co2+ ions were different, indicating that the activation mechanisms of both enzyme activities are different. Cyclomaltoheptaose inhibited both alpha-amylase and pullulanase activities with inhibition constants (Ki) of 0.029 and 0.06 mg/ml, respectively. Modification with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide confirmed a carboxy group at the active sites of both enzymes. The N-terminal sequence of the enzyme was: Ala-Asp-Ala-Lys-Lys-Thr-Pro- Gln-Gln-Gln-Phe- Asp-Ala-Leu-Trp-Ala-Ala-Gly-Ile-Val-Thr-Gly-Thr-Pro-Asp-Gly-Phe. The purified enzyme displayed Michaelis constant (Km) values of 0.55 mg/ml for amylose, and 0.71 mg/ml for pullulan. When both amylose and pullulan were simultaneously present, the observed rate of product formation closely fitted a kinetic model in which the two substrates are hydrolyzed at different active sites. These results suggest that amylopullulanases, which possess both alpha-1,6 and alpha-1,4 cleavage activities at the same active site, should be distinguished from APEs, which contain both activities at different active sites on the same polypeptide. Also, it is proposed that the Enzyme Commission use the term 'amylase-pullulanase enzyme' to refer to enzymes which act on starch and cleave both alpha-1,6-bonds in pullulan and alpha-1,4 bonds in amylose at different active sites.
Collapse
Affiliation(s)
- C H Kim
- Laboratory of Molecular and Cellular Biology, Korea Institute of Science and Technology, Yusung, Taejon
| | | |
Collapse
|
16
|
|