Obara Y, Nakahata N, Ohizumi Y. A new factor derived from 1321N1 human astrocytoma cells causes differentiation of PC-12 cells mediated through mitogen-activated protein kinase cascade.
Brain Res 1998;
806:79-88. [PMID:
9739111 DOI:
10.1016/s0006-8993(98)00731-8]
[Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glial cells play an important role in maintaining neural function. In the present study, we examined the effects of a factor derived from human astrocytoma cells (1321N1) on differentiation of rat pheochromocytoma cells (PC-12). The conditioned medium which had been used for culture of 1321N1 cells caused the differentiation of PC-12 cells, suggesting that 1321N1 cells release a neurotrophic factor. The factor was apparently distinct from well-known neurotrophic factors, such as nerve growth factor (NGF), since it was resistant to boiling and trypsin treatment. The molecular size of the factor was assumed to be below 1000 through dialysis and ultrafiltration experiments. Furthermore, PC-12 cells were differentiated synergistically by the combined addition of NGF and the conditioned medium of 1321N1 cells. Partially purified fraction of the factor by Sephadex G-15 gel filtration column caused the prolonged activation of mitogen-activated protein kinase (MAPK). The differentiation of PC-12 cells induced by the fraction or NGF disappeared after the treatment with PD98059, a specific inhibitor of MAPK kinase (MEK), suggesting the involvement of MAPK in the differentiation. These results suggest that the new low-molecular factor derived from glial cells causes differentiation of PC-12 cells mediated through an activation of MAPK.
Collapse