1
|
Wu W, Han Y, Niu B, Yang B, Liu R, Fang X, Chen H, Xiao S, Farag MA, Zheng S, Xiao J, Chen H, Gao H. Recent advances in Zizania latifolia: A comprehensive review on phytochemical, health benefits and applications that maximize its value. Crit Rev Food Sci Nutr 2024; 64:7535-7549. [PMID: 36908217 DOI: 10.1080/10408398.2023.2186125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Zizania latifolia is an aquatic and medicinal plant with a long history of development in China and the East Asian region. The smut fungus "Ustilago esculenta" parasitizes Z. latifolia and induces culm expansion to form a vegetable named Jiaobai, which has a unique taste and nutritional attributes. However, the postharvest quality of water bamboo shoots is still a big challenge for farmers and merchants. This paper traced the origin, development process, and morphological characteristics of Z. latifolia. Subsequently, the compilation of the primary nutrients and bioactive substances are presented in context to their effects on ecology a postharvest storage and preservation methods. Furthermore, the industrial, environmental, and material science applications of Z. latifolia in the fields of industry were discussed. Finally, the primary objective of the review proposes future directions for research to support the development of Z. latifolia industry and aid in maximizing its value. To sum up, Z. latifolia, aside from its potential as material it can be utilized to make different productions and improve the existing applications. This paper provides an emerging strategy for researchers undertaking Z. latifolia.
Collapse
Affiliation(s)
- Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanchao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baiqi Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huizhi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shangyue Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, Vigo, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Shiqi Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, Vigo, Spain
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
2
|
Li S, Yang M, Yao T, Xia W, Ye Z, Zhang S, Li Y, Zhang Z, Song R. Diploid mycelia of Ustilago esculenta fails to maintain sustainable proliferation in host plant. Front Microbiol 2023; 14:1199907. [PMID: 37555064 PMCID: PMC10405623 DOI: 10.3389/fmicb.2023.1199907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Smut fungi display a uniform life cycle including two phases: a saprophytic phase in vitro and a parasitic phase in host plants. Several apathogenic smut fungi are found, lacking suitable hosts in their habitat. Interestingly, MT-type Ustilago esculenta was found to maintain a parasitic life, lacking the saprophytic phase. Its long period of asexual proliferation in plant tissue results in severe defects in certain functions. In this study, the growth dynamics of U. esculenta in plant tissues were carefully observed. The mycelia of T- and MT-type U. esculenta exhibit rapid growth after karyogamy and aggregate between cells. While T-type U. esculenta successfully forms teliospores after aggregation, the aggregated mycelia of MT-type U. esculenta gradually disappeared after a short period of massive proliferation. It may be resulted by the lack of nutrition such as glucose and sucrose. After overwintering, infected Zizania latifolia plants no longer contained diploid mycelia resulting from karyogamy. This indicated that diploid mycelia failed to survive in plant tissues. It seems that diploid mycelium only serves to generate teliospores. Notably, MT-type U. esculenta keeps the normal function of karyogamy, though it is not necessary for its asexual life in plant tissue. Further investigations are required to uncover the underlying mechanism, which would improve our understanding of the life cycle of smut fungi and help the breeding of Z. latifolia.
Collapse
Affiliation(s)
- Shiyu Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Mengfei Yang
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Tongfu Yao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Shangfa Zhang
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Yipeng Li
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Zhongjin Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Ruiqi Song
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| |
Collapse
|
3
|
Chigira Y, Sasaki N, Komatsu K, Mashimo K, Tanaka S, Numamoto M, Moriyama H, Motobayashi T. Mating Types of Ustilago esculenta Infecting Zizania latifolia Cultivars in Japan Are Biased towards MAT-2 and MAT-3. Microbes Environ 2023; 38:ME23034. [PMID: 37704449 PMCID: PMC10522849 DOI: 10.1264/jsme2.me23034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023] Open
Abstract
Zizania latifolia cultivars infected by the endophytic fungus Ustilago esculenta develop an edible stem gall. Stem gall development varies among cultivars and individuals and may be affected by the strain of U. esculenta. To isolate haploids from two Z. latifolia cultivars in our paddy fields, Shirakawa and Ittenkou, we herein performed the sporadic isolation of U. esculenta strains from stem gall tissue, a PCR-based assessment of the mating type, and in vitro mating experiments. As a result, we obtained heterogametic strains of MAT-2 and MAT-3 as well as MAT-2, but not MAT-3, haploid strains. Another isolation method, in which we examined poorly growing small clusters of sporidia derived from teliospores, succeeded in isolating a MAT-3 haploid strain. We also identified the mating types of 10 U. esculenta strains collected as genetic resources from different areas in Japan. All strains, except for one MAT-1 haploid strain, were classified as MAT-2 haploid strains or heterogametic strains of MAT-2 and MAT-3. The isolated strains of MAT-1, MAT-2, and MAT-3 mated with each other to produce hyphae. Collectively, these results indicate that the mating types of U. esculenta infecting Z. latifolia cultivars in Japan are biased towards MAT-2 and MAT-3 and that U. esculenta populations in these Japanese cultivars may be characterized by the low isolation efficiency of the MAT-3 haploid.
Collapse
Affiliation(s)
- Yuka Chigira
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Nobumitsu Sasaki
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Ken Komatsu
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kouji Mashimo
- Field Science Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Shigeyuki Tanaka
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Minori Numamoto
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Hiromitsu Moriyama
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Takashi Motobayashi
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
4
|
Zhihao T, Yamada S, Hu D, Ito Y, Iwasaki T, Yamaguchi A. Unique growth stage-dependent anti-inflammatory and immunostimulating effects of white bamboo (makomotake) on RAW264 macrophages shown by no production. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tu Zhihao
- Department of Food Science and Human Wellness, Rakuno Gakuen University Midorimachi 582
| | - Sayumi Yamada
- Department of Food Science and Human Wellness, Rakuno Gakuen University Midorimachi 582
| | - Dagula Hu
- Department of Food Science and Human Wellness, Rakuno Gakuen University Midorimachi 582
| | | | - Tomohito Iwasaki
- Department of Food Science and Human Wellness, Rakuno Gakuen University Midorimachi 582
| | - Akihiro Yamaguchi
- Department of Food Science and Human Wellness, Rakuno Gakuen University Midorimachi 582
| |
Collapse
|
5
|
Zhang Y, Liu H, Cao Q, Ge Q, Cui H, Yu X, Ye Z. Cloning and characterization of the UePrf1 gene in Ustilago esculenta. FEMS Microbiol Lett 2019; 365:4956762. [PMID: 29617942 DOI: 10.1093/femsle/fny081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/29/2018] [Indexed: 11/12/2022] Open
Abstract
Ustilago esculenta, an obligate parasite of Zizania latifolia, is a typical dimorphic fungus which induces host stem swelling and inhibits host inflorescence development, but is not found in host leaves. Previous studies have shown that dimorphic switching is essential for fungal pathogenicity and is regulated by protein kinase A and mitogen-activated protein kinase (MAPK) signaling pathways that are integrated by Prf1 in Ustilago maydis. In this study we identified a Prf1 homolog in U. esculenta, designated UePrf1, encoding 830 amino acids with a conserved high mobility group domain located between amino acids 124 and 195. UePrf1 was upregulated during the mating process, which induces dimorphism in U. esculenta. In vitro, UePrf1 mutants showed defects in the mating process, including cell fusion and hyphal growth. UePrf1 mutants also show reduced expression of a genes, even during the cell fusion process. Additionally, the defect in hyphal growth of the UeKpp2 and UeKpp6 mutants (MAPK signaling pathway mutants) was partially counteracted by UePrf1 overexpression, along with induced b gene expression. These results provide evidence that UePrf1 is a key factor coordinating dimorphism in U. esculenta and suggest a conserved role for UePrf1 in the regulation of the a and b genes.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Honglei Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Qianchao Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Qianwen Ge
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
6
|
Jose RC, Bengyella L, Handique PJ, Talukdar NC. Cellular and proteomic events associated with the localized formation of smut-gall during Zizania latifolia-Ustilago esculenta interaction. Microb Pathog 2018; 126:79-84. [PMID: 30367966 DOI: 10.1016/j.micpath.2018.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/05/2018] [Accepted: 10/22/2018] [Indexed: 10/28/2022]
Abstract
The perennial wild rice Zizania latifolia is confined in the swampy habitat and wetland of the Indo-Burma biodiversity hotspot of India and infection by the biotrophic fungus Ustilago esculenta is hallmarked by swellings that develop to form localized smut-gall at the topmost internodal region. The cellular and proteomic events involved in the non-systemic colonization of Z. latifolia by U. esculenta leading to smut-gall formation is poorly understood. Proteins were extracted from the smut-gall region at the topmost internodal region below the apical meristematic tissue from the infected and uninfected parts of Z. latifolia. By combining transmission electron microscopy (TEM) and fluorescent microscopy (FM), we showed that U. esculenta hyphal morphological transitions and movement occurred both intercellularly and intracellularly while sporulation occurred intracellularly in selective cells. Following proteome profiling using two dimensional SDS-PAGE at different phenological phases of smut-gall development and U. esculenta infection, differentially expressed proteins bands and their relative abundance were detected and subjected to liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis. Importantly, the fungus explores at least 7 metabolic pathways and 5 major biological processes to subdue the host defense and thrive successfully on Z. latifolia. The fungus U. esculenta produces proteases and energy acquisition proteins those enhance it's defensive and survival mode in the host. The identified differentially regulated proteins shed-light into why inflorescence is being replaced by bulbous smut-gall at late stages of the disease, as well as the development of resistance in some Z. latifolia plants against U. esculenta infection.
Collapse
Affiliation(s)
- Robinson C Jose
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, 795001, Manipur, India; Department of Biotechnology, Guwahati University, Guwahati, 781014, Assam, India; Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India.
| | - Louis Bengyella
- Tree Fruit Research and Extension Center (TFREC), College of Agricultural, Human and Natural Resource Sciences (CAHNRS), Washington State University, USA; Department of Biological Control, Advanced Biotech Cooperative, Cameroon
| | - Pratap J Handique
- Department of Biotechnology, Guwahati University, Guwahati, 781014, Assam, India
| | - Narayan C Talukdar
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
7
|
Yan N, Du Y, Liu X, Chu C, Shi J, Zhang H, Liu Y, Zhang Z. Morphological Characteristics, Nutrients, and Bioactive Compounds of Zizania latifolia, and Health Benefits of Its Seeds. Molecules 2018; 23:E1561. [PMID: 29958396 PMCID: PMC6100627 DOI: 10.3390/molecules23071561] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 11/16/2022] Open
Abstract
Zizania latifolia (tribe Oryzeae Dum., subfamily Oryzoideae Care, family Gramineae) is native to East Asian countries. The seeds of Z. latifolia (Chinese wild rice) have been consumed as a cereal in China for >3000 years. Z. latifolia forms swollen culms when infected with Ustilago esculenta, which is the second most-cultivated aquatic vegetable in China. The current review summarizes the nutrients and bioactive compounds of Z. latifolia, and health benefits of its seeds. The seeds of Z. latifolia contain proteins, minerals, vitamins, and bioactive compounds, the activities of which—for example, antioxidant activity—have been characterized. Various health benefits are associated with their consumption, such as alleviation of insulin resistance and lipotoxicity, and protection against cardiovascular disease. Chinese wild rice may be used to prevent and treat metabolic disease, such as diabetes, obesity, and cardiovascular diseases. Various compounds were isolated from the swollen culm, and aerial parts of Z. latifolia. The former suppresses osteoclast formation, inhibits growth of rat glioma cells, and may act as antioxidants and immunomodulators in drugs or foods. The latter exerts anti-fatigue, anti-inflammatory, and anti-allergic effects. Thus, Z. latifolia may be used to produce nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongmei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xinmin Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Cheng Chu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Hongbo Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yanhua Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
8
|
Zhang Y, Cao Q, Hu P, Cui H, Yu X, Ye Z. Investigation on the differentiation of two Ustilago esculenta strains - implications of a relationship with the host phenotypes appearing in the fields. BMC Microbiol 2017; 17:228. [PMID: 29212471 PMCID: PMC5719756 DOI: 10.1186/s12866-017-1138-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ustilago esculenta, a pathogenic basidiomycete fungus, infects Zizania latifolia to form edible galls named Jiaobai in China. The distinct growth conditions of U. esculenta induced Z. latifolia to form three different phenotypes, named male Jiaobai, grey Jiaobai and white Jiaobai. The aim of this study is to characterize the genetic and morphological differences that distinguish the two U. esculenta strains. RESULTS In this study, sexually compatible haploid sporidia UeT14/UeT55 from grey Jiaobai (T strains) and UeMT10/UeMT46 from white Jiaobai (MT strains) were isolated. Meanwhile, we successfully established mating and inoculation assays. Great differences were observed between the T and MT strains. First, the MT strains had a defect in development, including lower teliospore formation frequency and germination rate, a slower growth rate and a lower growth mass. Second, they differed in the assimilation of nitrogen sources in that the T strains preferred urea and the MT strains preferred arginine. In addition, the MT strains were more sensitive to external signals, including pH and oxidative stress. Third, the MT strains showed an infection defect, resulting in an endophytic life in the host. This was in accordance with multiple mutated pathogenic genes discovered in the MT strains by the non-synonymous mutation analysis of the genome re-sequencing data between the MT and T strains (GenBank accession numbers of the genome re-sequencing data: JTLW00000000 for MT strains and SRR5889164 for T strains). CONCLUSION The MT strains appeared to have defects in growth and infection and were more sensitive to external signals compared to the T strains. They displayed an absolutely stable endophytic life in the host without an infection cycle. Accordingly, they had multiple gene mutations occurring, especially in pathogenicity. In contrast, the T strains, as phytopathogens, had a complete survival life cycle, in which the formation of teliospores is important for adaption and infection, leading to the appearance of the grey phenotype. Further studies elucidating the molecular differences between the U. esculenta strains causing differential host phenotypes will help to improve the production and formation of edible white galls.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Qianchao Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Peng Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
9
|
Kumar K, More SS, Khatik GL, Rawal RK, Nair VA. A Highly Stereoselective Chiral Auxiliary-assisted Reductive Cyclization to Furoindoline. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kapil Kumar
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; Sector 67 Mohali Punjab 160062 India
- Department of Pharmaceutical Chemistry; Indo-Soviet Friendship College of Pharmacy (ISFCP); Moga Punjab 142001 India
| | - Shital S. More
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; Sector 67 Mohali Punjab 160062 India
| | - Gopal L. Khatik
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences; Lovely Professional University; Phagwara Punjab 144411 India
| | - Ravindra K. Rawal
- Department of Pharmaceutical Chemistry; Indo-Soviet Friendship College of Pharmacy (ISFCP); Moga Punjab 142001 India
| | - Vipin A. Nair
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; Sector 67 Mohali Punjab 160062 India
| |
Collapse
|
10
|
Jose RC, Goyari S, Louis B, Waikhom SD, Handique PJ, Talukdar NC. Investigation on the biotrophic interaction of Ustilago esculenta on Zizania latifolia found in the Indo-Burma biodiversity hotspot. Microb Pathog 2016; 98:6-15. [DOI: 10.1016/j.micpath.2016.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/31/2016] [Accepted: 06/17/2016] [Indexed: 11/29/2022]
|
11
|
Sun PF, Fang WT, Shin LY, Wei JY, Fu SF, Chou JY. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PLoS One 2014; 9:e114196. [PMID: 25464336 PMCID: PMC4252105 DOI: 10.1371/journal.pone.0114196] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 11/03/2014] [Indexed: 11/18/2022] Open
Abstract
Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture.
Collapse
Affiliation(s)
- Pei-Feng Sun
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Wei-Ta Fang
- Graduate Institute of Environmental Education, National Taiwan Normal University, Taipei 116, Taiwan, R.O.C
| | - Li-Ying Shin
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Jyuan-Yu Wei
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Shih-Feng Fu
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
12
|
Choi JH, Suzuki T, Kawaguchi T, Yamashita K, Morita A, Masuda K, Yazawa K, Hirai H, Kawagishi H. Makomotines A to D from Makomotake, Zizania latifolia infected with Ustilago esculenta. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.04.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Surendiran G, Alsaif M, Kapourchali FR, Moghadasian MH. Nutritional constituents and health benefits of wild rice (Zizaniaspp.). Nutr Rev 2014; 72:227-36. [DOI: 10.1111/nure.12101] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Gangadaran Surendiran
- Department of Human Nutritional Sciences and Canadian Centre for Agri-food Research in Health and Medicine; University of Manitoba; Winnipeg MB Canada
| | - Maha Alsaif
- Department of Human Nutritional Sciences and Canadian Centre for Agri-food Research in Health and Medicine; University of Manitoba; Winnipeg MB Canada
| | | | - Mohammed H Moghadasian
- Department of Human Nutritional Sciences and Canadian Centre for Agri-food Research in Health and Medicine; University of Manitoba; Winnipeg MB Canada
- International Nutrition Research Inc.; Winnipeg MB Canada
| |
Collapse
|
14
|
Suzuki T, Choi JH, Kawaguchi T, Yamashita K, Morita A, Hirai H, Nagai K, Hirose T, Ōmura S, Sunazuka T, Kawagishi H. Makomotindoline from Makomotake, Zizania latifolia infected with Ustilago esculenta. Bioorg Med Chem Lett 2012; 22:4246-8. [DOI: 10.1016/j.bmcl.2012.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
|
15
|
Choi JH, Ogawa A, Abe N, Masuda K, Koyama T, Yazawa K, Kawagishi H. Chaxines B, C, D, and E from the edible mushroom Agrocybe chaxingu. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.09.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|