1
|
Takahashi Y. Isolation of hitherto-uncultivated microorganisms- Application of radical scavengers. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38417898 DOI: 10.2323/jgam.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The culture filtrates of the predominant bacterial strains isolated from soil samples have been shown to increase the microbial colony counts on agar plates used for the isolation of uncultured bacteria. One of the factors in the culture filtrates responsible for this increase was identified to be superoxide dismutase (SOD). The generation of reactive oxygen species (O2-, H2O2, and ・OH) was detected from conventional laboratory agar media. The use of agar media supplemented with radical scavengers (SOD, catalase, ascorbic acid, or rutin) effectively increased the colony counts and kinds of microbial strains that grew from soil samples. Taxonomical studies on these isolates revealed new taxa for phylum Actinomycetota; one family, three genera, and nine species were newly described. One of the strains, Patulibacter minatonensis KV-614T belonging to the new family Patulibacteraceae, was isolated on agar medium supplemented with SOD. P. minatonensis KV-614T represents a novel lineage within the phylum Actinomycetota. A polymerase chain reaction (PCR) study using specific primers for the detection of strains related to the genus Patulibacter, order Solirubrobacterales, showed a high distribution frequency, with detection in over 70% of the soil samples tested. These data suggest that the use of radical scavengers may facilitate the isolation of some hitherto-uncultivated microorganisms widely distributed in soil.
Collapse
|
2
|
Jiang YN, Tamiya-Ishitsuka H, Aoi R, Okabe T, Yokota A, Noda N. MazEF Homologs in Symbiobacterium thermophilum Exhibit Cross-Neutralization with Non-Cognate MazEFs. Toxins (Basel) 2024; 16:81. [PMID: 38393159 PMCID: PMC10893535 DOI: 10.3390/toxins16020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Toxin-antitoxin systems are preserved by nearly every prokaryote. The type II toxin MazF acts as a sequence-specific endoribonuclease, cleaving ribonucleotides at specific sequences that vary from three to seven bases, as has been reported in different host organisms to date. The present study characterized the MazEF module (MazEF-sth) conserved in the Symbiobacterium thermophilum IAM14863 strain, a Gram-negative syntrophic bacterium that can be supported by co-culture with multiple bacteria, including Bacillus subtilis. Based on a method combining massive parallel sequencing and the fluorometric assay, MazF-sth was determined to cleave ribonucleotides at the UACAUA motif, which is markedly similar to the motifs recognized by MazF from B. subtilis (MazF-bs), and by several MazFs from Gram-positive bacteria. MazF-sth, with mutations at conserved amino acid residues Arg29 and Thr52, lost most ribonuclease activity, indicating that these residues that are crucial for MazF-bs also play significant roles in MazF-sth catalysis. Further, cross-neutralization between MazF-sth and the non-cognate MazE-bs was discovered, and herein, the neutralization mechanism is discussed based on a protein-structure simulation via AlphaFold2 and multiple sequence alignment. The conflict between the high homology shared by these MazF amino acid sequences and the few genetic correlations among their host organisms may provide evidence of horizontal gene transfer.
Collapse
Affiliation(s)
- Yu-Nong Jiang
- Master’s/Doctoral Program in Life Science Innovation, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan
| | - Hiroko Tamiya-Ishitsuka
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan
| | - Rie Aoi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku 162-8480, Tokyo, Japan
| | - Takuma Okabe
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku 162-8480, Tokyo, Japan
| | - Akiko Yokota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan
| | - Naohiro Noda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku 162-8480, Tokyo, Japan
- Master’s/Doctoral Program in Life Science Innovation, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| |
Collapse
|
3
|
Genome Sequence of " Caldinitratiruptor microaerophilus," a Unique Microaerophilic Bacterium Closely Related to Symbiobacterium. Microbiol Resour Announc 2023; 12:e0114122. [PMID: 36656011 PMCID: PMC9933637 DOI: 10.1128/mra.01141-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We present the genome sequence of "Caldinitratiruptor microaerophilus" JCM16183, isolated by Fardeau et al. from a French hot spring. This microaerophilic bacterium represents a novel taxon related to the genus Symbiobacterium. The high (71%) G+C content of its 3.60-Mb circular genome supports the divergence of this bacterium from Clostridia.
Collapse
|
4
|
Gut Microbiota Patterns Predicting Long-Term Weight Loss Success in Individuals with Obesity Undergoing Nonsurgical Therapy. Nutrients 2022; 14:nu14153182. [PMID: 35956358 PMCID: PMC9370776 DOI: 10.3390/nu14153182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Background: The long-term success of nonsurgical weight reduction programs is variable; thus, predictors of outcome are of major interest. We hypothesized that the intestinal microbiota known to be linked with diet and obesity contain such predictive elements. Methods: Metagenome analysis by shotgun sequencing of stool DNA was performed in a cohort of 15 adults with obesity (mean body mass index 43.1 kg/m2) who underwent a one-year multidisciplinary weight loss program and another year of follow-up. Eight individuals were persistently successful (mean relative weight loss 18.2%), and seven individuals were not successful (0.2%). The relationship between relative abundancies of bacterial genera/species and changes in relative weight loss or body mass index was studied using three different statistical modeling methods. Results: When combining the predictor variables selected by the applied statistical modeling, we identified seven bacterial genera and eight bacterial species as candidates for predicting success of weight loss. By classification of relative weight-loss predictions for each patient using 2–5 term models, 13 or 14 out of 15 individuals were predicted correctly. Conclusions: Our data strongly suggest that gut microbiota patterns allow individual prediction of long-term weight loss success. Prediction accuracy seems to be high but needs confirmation by larger prospective trials.
Collapse
|
5
|
Chi CP, Chu S, Wang B, Zhang D, Zhi Y, Yang X, Zhou P. Dynamic bacterial assembly driven by Streptomyces griseorubens JSD-1 inoculants correspond to composting performance in swine manure and rice straw co-composting. BIORESOURCE TECHNOLOGY 2020; 313:123692. [PMID: 32570080 DOI: 10.1016/j.biortech.2020.123692] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
The effect of Streptomyces griseorubens JSD-1 inoculant on composting performance and bacterial community assembly during the swine manure and rice straw co-composting was studied by a high-throughput pyrosequencing technology. The JSD-1 inoculant contributed to a higher temperature (maximum 66.8 °C), a longer thermophilic phase (46 days), and a lower bacterial diversity in JSD-1 compost. The principle component analysis confirmed that JSD-1 inoculant significantly reshaped the microbial communities. The difference in genera significantly increased during both composting processes. The predominant biomarkers were members of Bacteroidetes in JSD-1 composting. The network analysis also showed different chief "connecting" genera in both composts. Moreover, JSD-1 inoculant increased the total nitrogen, phosphorus, and potassium content in composts. The redundancy analysis showed that the bacterial community was mainly influenced by temperature; additionally, the nutrient contents were positively correlated with temperature. These results demonstrated that JSD-1 inoculant drove the bacterial assembly to induce physicochemical property changes in co-composting.
Collapse
Affiliation(s)
- Chih Ping Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yuee Zhi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Cabal A, Jun SR, Jenjaroenpun P, Wanchai V, Nookaew I, Wongsurawat T, Burgess MJ, Kothari A, Wassenaar TM, Ussery DW. Genome-Based Comparison of Clostridioides difficile: Average Amino Acid Identity Analysis of Core Genomes. MICROBIAL ECOLOGY 2018; 76:801-813. [PMID: 29445826 PMCID: PMC6132499 DOI: 10.1007/s00248-018-1155-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Infections due to Clostridioides difficile (previously known as Clostridium difficile) are a major problem in hospitals, where cases can be caused by community-acquired strains as well as by nosocomial spread. Whole genome sequences from clinical samples contain a lot of information but that needs to be analyzed and compared in such a way that the outcome is useful for clinicians or epidemiologists. Here, we compare 663 public available complete genome sequences of C. difficile using average amino acid identity (AAI) scores. This analysis revealed that most of these genomes (640, 96.5%) clearly belong to the same species, while the remaining 23 genomes produce four distinct clusters within the Clostridioides genus. The main C. difficile cluster can be further divided into sub-clusters, depending on the chosen cutoff. We demonstrate that MLST, either based on partial or full gene-length, results in biased estimates of genetic differences and does not capture the true degree of similarity or differences of complete genomes. Presence of genes coding for C. difficile toxins A and B (ToxA/B), as well as the binary C. difficile toxin (CDT), was deduced from their unique PfamA domain architectures. Out of the 663 C. difficile genomes, 535 (80.7%) contained at least one copy of ToxA or ToxB, while these genes were missing from 128 genomes. Although some clusters were enriched for toxin presence, these genes are variably present in a given genetic background. The CDT genes were found in 191 genomes, which were restricted to a few clusters only, and only one cluster lacked the toxin A/B genes consistently. A total of 310 genomes contained ToxA/B without CDT (47%). Further, published metagenomic data from stools were used to assess the presence of C. difficile sequences in blinded cases of C. difficile infection (CDI) and controls, to test if metagenomic analysis is sensitive enough to detect the pathogen, and to establish strain relationships between cases from the same hospital. We conclude that metagenomics can contribute to the identification of CDI and can assist in characterization of the most probable causative strain in CDI patients.
Collapse
Affiliation(s)
- Adriana Cabal
- Molecular Microbiology and Genomics Consultants, Tannenstrasse 7, 55576, Zotzenheim, Germany
| | - Se-Ran Jun
- Arkansas Center for Genomic Epidemiology and Medicine, Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W. Markham Str., Slot 782, Little Rock, AR, 72205, USA
| | - Piroon Jenjaroenpun
- Arkansas Center for Genomic Epidemiology and Medicine, Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W. Markham Str., Slot 782, Little Rock, AR, 72205, USA
| | - Visanu Wanchai
- Arkansas Center for Genomic Epidemiology and Medicine, Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W. Markham Str., Slot 782, Little Rock, AR, 72205, USA
| | - Intawat Nookaew
- Arkansas Center for Genomic Epidemiology and Medicine, Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W. Markham Str., Slot 782, Little Rock, AR, 72205, USA
| | - Thidathip Wongsurawat
- Arkansas Center for Genomic Epidemiology and Medicine, Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W. Markham Str., Slot 782, Little Rock, AR, 72205, USA
| | - Mary J Burgess
- Division of Infectious Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Atul Kothari
- Division of Infectious Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Trudy M Wassenaar
- Molecular Microbiology and Genomics Consultants, Tannenstrasse 7, 55576, Zotzenheim, Germany
- Arkansas Center for Genomic Epidemiology and Medicine, Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W. Markham Str., Slot 782, Little Rock, AR, 72205, USA
| | - David W Ussery
- Arkansas Center for Genomic Epidemiology and Medicine, Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W. Markham Str., Slot 782, Little Rock, AR, 72205, USA.
| |
Collapse
|
7
|
Abstract
BACKGROUND The majority of environmental bacteria and around a third of oral bacteria remain uncultivated. Furthermore, several bacterial phyla have no cultivable members and are recognised only by detection of their DNA by molecular methods. Possible explanations for the resistance of certain bacteria to cultivation in purity in vitro include: unmet fastidious growth requirements; inhibition by environmental conditions or chemical factors produced by neighbouring bacteria in mixed cultures; or conversely, dependence on interactions with other bacteria in the natural environment, without which they cannot survive in isolation. Auxotrophic bacteria, with small genomes lacking in the necessary genetic material to encode for essential nutrients, frequently rely on close symbiotic relationships with other bacteria for survival, and may therefore be recalcitrant to cultivation in purity. HIGHLIGHT Since in-vitro culture is essential for the comprehensive characterisation of bacteria, particularly with regard to virulence and antimicrobial resistance, the cultivation of uncultivated organisms has been a primary focus of several research laboratories. Many targeted and open-ended strategies have been devised and successfully used. Examples include: the targeted detection of specific bacteria in mixed plate cultures using colony hybridisation; growth in simulated natural environments or in co-culture with 'helper' strains; and modified media preparation techniques or development of customised media eg. supplementation of media with potential growth-stimulatory factors such as siderophores. CONCLUSION Despite significant advances in recent years in methodologies for the cultivation of previously uncultivated bacteria, a substantial proportion remain to be cultured and efforts to devise high-throughput strategies should be a high priority.
Collapse
Affiliation(s)
- Sonia R. Vartoukian
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
8
|
Antibiotics in microbial coculture. J Antibiot (Tokyo) 2016; 70:361-365. [DOI: 10.1038/ja.2016.127] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/06/2016] [Accepted: 09/10/2016] [Indexed: 12/28/2022]
|
9
|
|
10
|
Abstract
Quinol oxidation in the catalytic quinol oxidation site (Qo site) of cytochrome (cyt) bc1 complexes is the key step of the Q cycle mechanism, which laid the ground for Mitchell’s chemiosmotic theory of energy conversion. Bifurcated electron transfer upon quinol oxidation enables proton uptake and release on opposite membrane sides, thus generating a proton gradient that fuels ATP synthesis in cellular respiration and photosynthesis. The Qo site architecture formed by cyt b and Rieske iron–sulfur protein (ISP) impedes harmful bypass reactions. Catalytic importance is assigned to four residues of cyt b formerly described as PEWY motif in the context of mitochondrial complexes, which we now denominate Qo motif as comprehensive evolutionary sequence analysis of cyt b shows substantial natural variance of the motif with phylogenetically specific patterns. In particular, the Qo motif is identified as PEWY in mitochondria, α- and ε-Proteobacteria, Aquificae, Chlorobi, Cyanobacteria, and chloroplasts. PDWY is present in Gram-positive bacteria, Deinococcus–Thermus and haloarchaea, and PVWY in β- and γ-Proteobacteria. PPWF only exists in Archaea. Distinct patterns for acidophilic organisms indicate environment-specific adaptations. Importantly, the presence of PDWY and PEWY is correlated with the redox potential of Rieske ISP and quinone species. We propose that during evolution from low to high potential electron-transfer systems in the emerging oxygenic atmosphere, cyt bc1 complexes with PEWY as Qo motif prevailed to efficiently use high potential ubiquinone as substrate, whereas cyt b with PDWY operate best with low potential Rieske ISP and menaquinone, with the latter being the likely composition of the ancestral cyt bc1 complex.
Collapse
Affiliation(s)
- Wei-Chun Kao
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
- Faculty of Biology, University of Freiburg, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
- *Corresponding author: E-mail:
| |
Collapse
|
11
|
Watsuji TO, Takano H, Yamabe T, Tamazawa S, Ikemura H, Ohishi T, Matsuda T, Shiratori-Takano H, Beppu T, Ueda K. Analysis of the tryptophanase expression in Symbiobacterium thermophilum in a coculture with Geobacillus stearothermophilus. Appl Microbiol Biotechnol 2014; 98:10177-86. [DOI: 10.1007/s00253-014-6053-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/05/2014] [Accepted: 08/28/2014] [Indexed: 11/29/2022]
|
12
|
MacGregor BJ, Biddle JF, Harbort C, Matthysse AG, Teske A. Sulfide oxidation, nitrate respiration, carbon acquisition, and electron transport pathways suggested by the draft genome of a single orange Guaymas Basin Beggiatoa (Cand. Maribeggiatoa) sp. filament. Mar Genomics 2013; 11:53-65. [PMID: 24012537 DOI: 10.1016/j.margen.2013.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/27/2022]
Abstract
A near-complete draft genome has been obtained for a single vacuolated orange Beggiatoa (Cand. Maribeggiatoa) filament from a Guaymas Basin seafloor microbial mat, the third relatively complete sequence for the Beggiatoaceae. Possible pathways for sulfide oxidation; nitrate respiration; inorganic carbon fixation by both Type II RuBisCO and the reductive tricarboxylic acid cycle; acetate and possibly formate uptake; and energy-generating electron transport via both oxidative phosphorylation and the Rnf complex are discussed here. A role in nitrite reduction is suggested for an abundant orange cytochrome produced by the Guaymas strain; this has a possible homolog in Beggiatoa (Cand. Isobeggiatoa) sp. PS, isolated from marine harbor sediment, but not Beggiatoa alba B18LD, isolated from a freshwater rice field ditch. Inferred phylogenies for the Calvin-Benson-Bassham (CBB) cycle and the reductive (rTCA) and oxidative (TCA) tricarboxylic acid cycles suggest that genes encoding succinate dehydrogenase and enzymes for carboxylation and/or decarboxylation steps (including RuBisCO) may have been introduced to (or exported from) one or more of the three genomes by horizontal transfer, sometimes by different routes. Sequences from the two marine strains are generally more similar to each other than to sequences from the freshwater strain, except in the case of RuBisCO: only the Guaymas strain encodes a Type II enzyme, which (where studied) discriminates less against oxygen than do Type I RuBisCOs. Genes subject to horizontal transfer may represent key steps for adaptation to factors such as oxygen and carbon dioxide concentration, organic carbon availability, and environmental variability.
Collapse
Affiliation(s)
- Barbara J MacGregor
- Department of Marine Sciences, University of North Carolina - Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
13
|
Cardinali-Rezende J, Colturato LFDB, Colturato TDB, Chartone-Souza E, Nascimento AMA, Sanz JL. Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions. BIORESOURCE TECHNOLOGY 2012; 119:373-83. [PMID: 22750748 DOI: 10.1016/j.biortech.2012.05.136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/27/2012] [Accepted: 05/28/2012] [Indexed: 05/16/2023]
Abstract
The prokaryotic diversity of an anaerobic reactor for the treatment of municipal solid waste was investigated over the course of 2 years with the use of 16S rDNA-targeted molecular approaches. The fermentative Bacteroidetes and Firmicutes predominated, and Proteobacteria, Actinobacteria, Tenericutes and the candidate division WWE1 were also identified. Methane production was dominated by the hydrogenotrophic Methanomicrobiales (Methanoculleus sp.) and their syntrophic association with acetate-utilizing and propionate-oxidizing bacteria. qPCR demonstrated the predominance of the hydrogenotrophic over aceticlastic Methanosarcinaceae (Methanosarcina sp. and Methanimicrococcus sp.), and Methanosaetaceae (Methanosaeta sp.) were measured in low numbers in the reactor. According to the FISH and CARD-FISH analyses, Bacteria and Archaea accounted for 85% and 15% of the cells, respectively. Different cell counts for these domains were obtained by qPCR versus FISH analyses. The use of several molecular tools increases our knowledge of the prokaryotic community dynamics from start-up to steady-state conditions in a full-scale MSW reactor.
Collapse
Affiliation(s)
- Juliana Cardinali-Rezende
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31.270-901, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Dispensabilities of carbonic anhydrase in proteobacteria. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:324549. [PMID: 22675650 PMCID: PMC3364446 DOI: 10.1155/2012/324549] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/14/2012] [Indexed: 11/17/2022]
Abstract
Carbonic anhydrase (CA) (E.C. 4.2.1.1) is a ubiquitous enzyme catalysing interconversion between CO(2) and bicarbonate. The irregular distribution of the phylogenetically distinct classes of CA in procaryotic genome suggests its complex evolutionary history in procaryotes. Genetic evidence regarding the dispensability of CA under high-CO(2) air in some model organisms indicates that CA-deficient microorganisms can persist in the natural environment by choosing high-CO(2) niches. In this study, we studied the distribution of CA in the genome of Proteobacteria. While a large majority of the genome-sequenced Proteobacteria retained a CA gene(s), intracellular bacterial genera such as Buchnera and Rickettsia contained CA-defective strains. Comparison between CA-retaining and CA- deficient genomes showed the absence of whole coding sequence in some strains and the presence of frameshifted coding sequence in other strains. The evidence suggests that CA is inactivated and lost in some proteobacteria during the course of evolution based on its dispensability.
Collapse
|
15
|
Piterina AV, Bartlett J, Pembroke JT. Phylogenetic analysis of the bacterial community in a full scale autothermal thermophilic aerobic digester (ATAD) treating mixed domestic wastewater sludge for land spread. WATER RESEARCH 2012; 46:2488-2504. [PMID: 22386327 DOI: 10.1016/j.watres.2012.01.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 12/15/2011] [Accepted: 01/28/2012] [Indexed: 05/31/2023]
Abstract
The bacterial community associated with a full scale autothermal thermophilic aerobic digester (ATAD) treating sludge, originating from domestic wastewater and destined for land spread, was analysed using a number of molecular approaches optimised specifically for this high temperature environment. 16S rDNA genes were amplified directly from sludge with universally conserved and Bacteria-specific rDNA gene primers and a clone library constructed that corresponded to the late thermophilic stage (t = 23 h) of the ATAD process. Sequence analyses revealed various 16S rDNA gene sequence types reflective of high bacterial community diversity. Members of the bacterial community included α- and β-Proteobacteria, Actinobacteria with High G + C content and Gram-Positive bacteria with a prevalence of the Firmicutes (Low G + C) division (class Clostridia and Bacillus). Most of the ATAD clones showed affiliation with bacterial species previously isolated or detected in other elevated temperature environments, at alkaline pH, or in cellulose rich environments. Several phylotypes associated with Fe(III)- and Mn(IV)-reducing anaerobes were also detected. The presence of anaerobes was of interest in such large scale systems where sub-optimal aeration and mixing is often the norm while the presence of large amounts of capnophiles suggest the possibility of limited convection and entrapment of CO(2) within the sludge matrix during digestion. Comparative analysis with organism identified in other ATAD systems revealed significant differences based on optimised techniques. The abundance of thermophilic, alkalophilic and cellulose-degrading phylotypes suggests that these organisms are responsible for maintaining the elevated temperature at the later stages of the ATAD process.
Collapse
Affiliation(s)
- Anna V Piterina
- Molecular Biochemistry Laboratory, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland.
| | | | | |
Collapse
|
16
|
Kim K, Kim JJ, Masui R, Kuramitsu S, Sung MH. A commensal symbiotic interrelationship for the growth of Symbiobacterium toebii with its partner bacterium, Geobacillus toebii. BMC Res Notes 2011; 4:437. [PMID: 22023733 PMCID: PMC3208422 DOI: 10.1186/1756-0500-4-437] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 10/24/2011] [Indexed: 11/10/2022] Open
Abstract
Background Symbiobacterium toebii is a commensal symbiotic thermophile that absolutely requires its partner bacterium Geobacillus toebii for growth. Despite development of an independent cultivation method using cell-free extracts, the growth of Symbiobacterium remains unknown due to our poor understanding of the symbiotic relationship with its partner bacterium. Here, we investigated the interrelationship between these two bacteria for growth of S. toebii using different cell-free extracts of G. toebii. Results Symbiobacterium toebii growth-supporting factors were constitutively produced through almost all growth phases and under different oxygen tensions in G. toebii, indicating that the factor may be essential components for growth of G. toebii as well as S. toebii. The growing conditions of G. toebii under different oxygen tension dramatically affected to the initial growth of S. toebii and the retarded lag phase was completely shortened by reducing agent, L-cysteine indicating an evidence of commensal interaction of microaerobic and anaerobic bacterium S. toebii with a facultative aerobic bacterium G. toebii. In addition, the growth curve of S. toebii showed a dependency on the protein concentration of cell-free extracts of G. toebii, demonstrating that the G. toebii-derived factors have nutrient-like characters but not quorum-sensing characters. Conclusions Not only the consistent existence of the factor in G. toebii during all growth stages and under different oxygen tensions but also the concentration dependency of the factor for proliferation and optimal growth of S. toebii, suggests that an important biosynthetic machinery lacks in S. toebii during evolution. The commensal symbiotic bacterium, S. toebii uptakes certain ubiquitous and essential compound for its growth from environment or neighboring bacteria that shares the equivalent compounds. Moreover, G. toebii grown under aerobic condition shortened the lag phase of S. toebii under anaerobic and microaerobic conditions, suggests a possible commensal interaction that G. toebii scavengers ROS/RNS species and helps the initial growth of S. toebii.
Collapse
Affiliation(s)
- Kwang Kim
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan.
| | | | | | | | | |
Collapse
|
17
|
Kumaki Y, Ogawa M, Hirano T, Yoshikawa K, Iwasawa N, Yagi T, Hakamata W, Oku T, Nishio T. Family M42 aminopeptidase from the syntrophic bacterium Symbiobacterium thermophilum: Characterization using recombinant protein. J Biosci Bioeng 2011; 111:134-9. [DOI: 10.1016/j.jbiosc.2010.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 10/18/2022]
|
18
|
Oshima K, Ueda K, Beppu T, Nishida H. Unique Evolution of Symbiobacterium thermophilum Suggested from Gene Content and Orthologous Protein Sequence Comparisons. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2010; 2011:376831. [PMID: 21350630 PMCID: PMC3039458 DOI: 10.4061/2011/376831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/27/2010] [Indexed: 11/20/2022]
Abstract
Comparisons of gene content and orthologous protein sequence constitute a major strategy in whole-genome comparison studies. It is expected that horizontal gene transfer between phylogenetically distant organisms and lineage-specific gene loss have greater influence on gene content-based phylogenetic analysis than orthologous protein sequence-based phylogenetic analysis. To determine the evolution of the syntrophic bacterium Symbiobacterium thermophilum, we analyzed phylogenetic relationships among Clostridia on the basis of gene content and orthologous protein sequence comparisons. These comparisons revealed that these 2 phylogenetic relationships are topologically different. Our results suggest that each Clostridia has a species-specific gene content because frequent genetic exchanges or gene losses have occurred during evolution. Specifically, the phylogenetic positions of syntrophic Clostridia were different between these 2 phylogenetic analyses, suggesting that large diversity in the living environments may cause the observed species-specific gene content. S. thermophilum occupied the most distant position from the other syntrophic Clostridia in the gene content-based phylogenetic tree. We identified 32 genes (14 under relaxed selection and 18 under functional constraint) evolving under Symbiobacterium-specific selection on the basis of synonymous-to-nonsynonymous substitution ratios. Five of the 14 genes under relaxed selection are related to transcription. In contrast, none of the 18 genes under functional constraint is related to transcription.
Collapse
Affiliation(s)
- Kenro Oshima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
19
|
Nishida H, Yun CS. Phylogenetic and Guanine-Cytosine Content Analysis of Symbiobacterium thermophilum Genes. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2010; 2011:634505. [PMID: 21350632 PMCID: PMC3039409 DOI: 10.4061/2011/634505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/20/2010] [Accepted: 11/05/2010] [Indexed: 11/20/2022]
Abstract
Although the bacterium Symbiobacterium thermophilum has a genome with a high guanine-cytosine (GC) content (69%), it belongs to a low GC content bacterial group. We detected only 18 low GC content regions with 5 or more consecutive genes whose GC contents were below 65% in the genome of this organism. S. thermophilum has 66 transposase genes, which are markers of transposable genetic elements, and 38 (58%) of them were located in the low GC content regions, suggesting that Symbiobacterium has a similar gene silencing system as Salmonella. The top hit (best match) analyses for each Symbiobacterium protein showed that putative horizontally transferred genes and vertically inherited genes are scattered across the genome. Approximately 25% of the 3338 Symbiobacterium proteins have the highest similarity with the protein of a phylogenetically distant organism. The putative horizontally transferred genes also have a high GC content, suggesting that Symbiobacterium has gained many DNA fragments from phylogenetically distant organisms during the early stage of Firmicutes evolution. After acquiring genes, Symbiobacterium increased the GC content of the horizontally transferred genes and thereby maintained a genome with a high GC content.
Collapse
Affiliation(s)
- Hiromi Nishida
- Agricultural Bioinformatics Research Unit, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | |
Collapse
|
20
|
Nishida H, Beppu T, Ueda K. Symbiobacterium Lost Carbonic Anhydrase in the Course of Evolution. J Mol Evol 2009; 68:90-6. [DOI: 10.1007/s00239-008-9191-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 12/03/2008] [Accepted: 12/03/2008] [Indexed: 11/30/2022]
|
21
|
Abstract
This review describes secondary metabolites that have been shown to be synthesized by symbiotic bacteria, or for which this possibility has been discussed. It includes 365 references.
Collapse
Affiliation(s)
- Jörn Piel
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
| |
Collapse
|
22
|
Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci U S A 2008; 105:10039-44. [PMID: 18632554 DOI: 10.1073/pnas.0800679105] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lateral gene transfer is an important mechanism of natural variation among prokaryotes, but the significance of its quantitative contribution to genome evolution is debated. Here, we report networks that capture both vertical and lateral components of evolutionary history among 539,723 genes distributed across 181 sequenced prokaryotic genomes. Partitioning of these networks by an eigenspectrum analysis identifies community structure in prokaryotic gene-sharing networks, the modules of which do not correspond to a strictly hierarchical prokaryotic classification. Our results indicate that, on average, at least 81 +/- 15% of the genes in each genome studied were involved in lateral gene transfer at some point in their history, even though they can be vertically inherited after acquisition, uncovering a substantial cumulative effect of lateral gene transfer on longer evolutionary time scales.
Collapse
|
23
|
Ueda K, Tagami Y, Kamihara Y, Shiratori H, Takano H, Beppu T. Isolation of bacteria whose growth is dependent on high levels of CO2 and implications of their potential diversity. Appl Environ Microbiol 2008; 74:4535-8. [PMID: 18487395 PMCID: PMC2493168 DOI: 10.1128/aem.00491-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 05/12/2008] [Indexed: 11/20/2022] Open
Abstract
Although some bacteria require an atmosphere with high CO(2) levels for their growth, CO(2) is not generally supplied to conventional screening cultures. Here, we isolated 84 bacterial strains exhibiting high-CO(2) dependence. Their phylogenetic affiliations imply that high-CO(2) culture has potential as an effective method to isolate unknown microorganisms.
Collapse
Affiliation(s)
- Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-8510, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Distribution of Symbiobacterium thermophilum and related bacteria in the marine environment. Biosci Biotechnol Biochem 2008; 72:204-11. [PMID: 18175900 DOI: 10.1271/bbb.70619] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We study the ecological distribution of a unique syntrophic bacterium, Symbiobacterium thermophilum, and related bacteria. In this study, we found that they were frequently obtained from seashells and several marine samples. Symbiobacterium also grew from sterilized oyster shells incubated undersea for 2 or 3 months on the coast of Shimoda, Shizuoka, Japan. 16S rRNA gene-based phylogeny of the clones obtained from the Symbiobacterium-positive cultures demonstrated the potential diversity of this bacterial group, which constitutes a distinct clade between Actinobacteria and Firmicutes. We successfully isolated two new Symbiobacterium strains from oyster shells. 16S rRNA gene-based phylogeny indicated that one belongs to S. thermophilum, and that the other is affiliated with a different species. We also isolated Ureibacillius spp., which showed activity supporting the growth of S. thermophilum.
Collapse
|