1
|
Paternoster C, Tarenzi T, Potestio R, Lattanzi G. Gamma-Hemolysin Components: Computational Strategies for LukF-Hlg2 Dimer Reconstruction on a Model Membrane. Int J Mol Sci 2023; 24:ijms24087113. [PMID: 37108277 PMCID: PMC10138441 DOI: 10.3390/ijms24087113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The gamma-hemolysin protein is one of the most common pore-forming toxins expressed by the pathogenic bacterium Staphylococcus aureus. The toxin is used by the pathogen to escape the immune system of the host organism, by assembling into octameric transmembrane pores on the surface of the target immune cell and leading to its death by leakage or apoptosis. Despite the high potential risks associated with Staphylococcus aureus infections and the urgent need for new treatments, several aspects of the pore-formation process from gamma-hemolysin are still unclear. These include the identification of the interactions between the individual monomers that lead to the formation of a dimer on the cell membrane, which represents the unit for further oligomerization. Here, we employed a combination of all-atom explicit solvent molecular dynamics simulations and protein-protein docking to determine the stabilizing contacts that guide the formation of a functional dimer. The simulations and the molecular modeling reveal the importance of the flexibility of specific protein domains, in particular the N-terminus, to drive the formation of the correct dimerization interface through functional contacts between the monomers. The results obtained are compared with the experimental data available in the literature.
Collapse
Affiliation(s)
- Costanza Paternoster
- Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| | - Thomas Tarenzi
- Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| | - Raffaello Potestio
- Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| | - Gianluca Lattanzi
- Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| |
Collapse
|
2
|
Mishra S, Roy A, Dutta S. Cryo-EM-based structural insights into supramolecular assemblies of γ-hemolysin from S. aureus reveal the pore formation mechanism. Structure 2023:S0969-2126(23)00085-0. [PMID: 37019111 DOI: 10.1016/j.str.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/31/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023]
Abstract
γ-Hemolysin (γ-HL) is a hemolytic and leukotoxic bicomponent β-pore-forming toxin (β-PFT), a potent virulence factor from the Staphylococcus aureus Newman strain. In this study, we performed single-particle cryoelectron microscopy (cryo-EM) of γ-HL in a lipid environment. We observed clustering and square lattice packing of octameric HlgAB pores on the membrane bilayer and an octahedral superassembly of octameric pore complexes that we resolved at resolution of 3.5 Å. Our atomic model further demonstrated the key residues involved in hydrophobic zipping between the rim domains of adjacent octameric complexes, providing additional structural stability in PFTs post oligomerization. We also observed extra densities at the octahedral and octameric interfaces, providing insights into the plausible lipid-binding residues involved for HlgA and HlgB components. Furthermore, the hitherto elusive N-terminal region of HlgA was also resolved in our cryo-EM map, and an overall mechanism of pore formation for bicomponent β-PFTs is proposed.
Collapse
Affiliation(s)
- Suman Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Anupam Roy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
3
|
Tarenzi T, Lattanzi G, Potestio R. Membrane binding of pore-forming γ-hemolysin components studied at different lipid compositions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183970. [PMID: 35605647 DOI: 10.1016/j.bbamem.2022.183970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Methicillin-resistant Staphylococcus aureus is among those pathogens currently posing the highest threat to public health. Its host immune evasion strategy is mediated by pore-forming toxins (PFTs), among which the bi-component γ-hemolysin is one of the most common. The complexity of the porogenesis mechanism by γ-hemolysin poses difficulties in the development of antivirulence therapies targeting PFTs from S. aureus, and sparse and apparently contrasting experimental data have been produced. Here, through a large set of molecular dynamics simulations at different levels of resolution, we investigate the first step of pore formation, and in particular the effect of membrane composition on the ability of γ-hemolysin components, LukF and Hlg2, to steadily adhere to the lipid bilayer in the absence of proteinaceous receptors. Our simulations are in agreement with experimental data of γ-hemolysin pore formation on model membranes, which are here explained on the basis of the bilayer properties. Our computational investigation suggests a possible rationale to explain experimental data on phospholipid binding to the LukF component, and to hypothesise a mechanism by which, on purely lipidic bilayers, the stable anchoring of LukF to the cell surface facilitates Hlg2 binding, through the exposure of its N-terminal region. We expect that further insights on the mechanism of transition between soluble and membrane bound-forms and on the role played by the lipid molecules will contribute to the design of antivirulence agents with enhanced efficacy against methicillin-resistant S. aureus infections.
Collapse
Affiliation(s)
- Thomas Tarenzi
- Department of Physics, University of Trento, Via Sommarive 14, Povo (TN) 38123, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, Povo (TN) 38123, Italy.
| | - Gianluca Lattanzi
- Department of Physics, University of Trento, Via Sommarive 14, Povo (TN) 38123, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, Povo (TN) 38123, Italy.
| | - Raffaello Potestio
- Department of Physics, University of Trento, Via Sommarive 14, Povo (TN) 38123, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, Povo (TN) 38123, Italy.
| |
Collapse
|
4
|
Vasquez MT, Lubkin A, Reyes-Robles T, Day CJ, Lacey KA, Jennings MP, Torres VJ. Identification of a domain critical for Staphylococcus aureus LukED receptor targeting and lysis of erythrocytes. J Biol Chem 2020; 295:17241-17250. [PMID: 33051210 PMCID: PMC7863875 DOI: 10.1074/jbc.ra120.015757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Leukocidin ED (LukED) is a pore-forming toxin produced by Staphylococcus aureus, which lyses host cells and promotes virulence of the bacteria. LukED enables S. aureus to acquire iron by lysing erythrocytes, which depends on targeting the host receptor Duffy antigen receptor for chemokines (DARC). The toxin also targets DARC on the endothelium, contributing to the lethality observed during bloodstream infection in mice. LukED is comprised of two monomers: LukE and LukD. LukE binds to DARC and facilitates hemolysis, but the closely related Panton-Valentine leukocidin S (LukS-PV) does not bind to DARC and is not hemolytic. The interaction of LukE with DARC and the role this plays in hemolysis are incompletely characterized. To determine the domain(s) of LukE that are critical for DARC binding, we studied the hemolytic function of LukE-LukS-PV chimeras, in which areas of sequence divergence (divergence regions, or DRs) were swapped between the toxins. We found that two regions of LukE's rim domain contribute to hemolysis, namely residues 57-75 (DR1) and residues 182-196 (DR4). Interestingly, LukE DR1 is sufficient to render LukS-PV capable of DARC binding and hemolysis. Further, LukE, by binding DARC through DR1, promotes the recruitment of LukD to erythrocytes, likely by facilitating LukED oligomer formation. Finally, we show that LukE targets murine Darc through DR1 in vivo to cause host lethality. These findings expand our biochemical understanding of the LukE-DARC interaction and the role that this toxin-receptor pair plays in S. aureus pathophysiology.
Collapse
Affiliation(s)
- Marilyn T Vasquez
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ashira Lubkin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Tamara Reyes-Robles
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Keenan A Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
5
|
Liu J, Kozhaya L, Torres VJ, Unutmaz D, Lu M. Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence. J Biol Chem 2020; 295:5944-5959. [PMID: 32179646 PMCID: PMC7196633 DOI: 10.1074/jbc.ra120.012697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/06/2020] [Indexed: 01/07/2023] Open
Abstract
The rapid emergence and dissemination of methicillin-resistant Staphylococcus aureus (MRSA) strains poses a major threat to public health. MRSA possesses an arsenal of secreted host-damaging virulence factors that mediate pathogenicity and blunt immune defenses. Panton-Valentine leukocidin (PVL) and α-toxin are exotoxins that create lytic pores in the host cell membrane. They are recognized as being important for the development of invasive MRSA infections and are thus potential targets for antivirulence therapies. Here, we report the high-resolution X-ray crystal structures of both PVL and α-toxin in their soluble, monomeric, and oligomeric membrane-inserted pore states in complex with n-tetradecylphosphocholine (C14PC). The structures revealed two evolutionarily conserved phosphatidylcholine-binding mechanisms and their roles in modulating host cell attachment, oligomer assembly, and membrane perforation. Moreover, we demonstrate that the soluble C14PC compound protects primary human immune cells in vitro against cytolysis by PVL and α-toxin and hence may serve as the basis for the development of an antivirulence agent for managing MRSA infections.
Collapse
Affiliation(s)
- Jie Liu
- Public Health Research Institute, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Lina Kozhaya
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032
| | - Victor J. Torres
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032
| | - Min Lu
- Public Health Research Institute, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, To whom correspondence should be addressed:
Public Health Research Institute, Dept. of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Newark, NJ 07103. Tel.:
973-854-3260; E-mail:
| |
Collapse
|
6
|
Peng Z, Shibata N, Tada H, Kaneko J. Cytotoxicity analysis of staphylococcal bi-component β-pore forming toxins using the CHO cells expressing human lymphocyte receptor CCR5. Biosci Biotechnol Biochem 2018; 82:2094-2097. [PMID: 30185128 DOI: 10.1080/09168451.2018.1515614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
CCR5-mediated cytotoxicity of staphylococcal bi-component toxins was investigated using human CCR5-expressing CHO cells. Cytotoxicity of rim domain loop-exchange mutants between LukE and Hlg2 indicated that loop-4 of LukE is essential for cytotoxicity in combination with LukD. Interestingly, Hlg2 showed LukF-dependent CCR5-mediated cytotoxicity, suggesting that the F-components of toxins also play a role in the cell-specific cytotoxicity.
Collapse
Affiliation(s)
- Zhao Peng
- a Department of Microbial Biotechnology , Graduate School of Agricultural Science, Tohoku University , Sendai , Japan
| | - Nao Shibata
- b Exploratory Research Laboratories , Tsukuba Research Institute, ONO pharmaceutical Co., LTD , Tsukuba , Japan
| | - Hideaki Tada
- b Exploratory Research Laboratories , Tsukuba Research Institute, ONO pharmaceutical Co., LTD , Tsukuba , Japan
| | - Jun Kaneko
- a Department of Microbial Biotechnology , Graduate School of Agricultural Science, Tohoku University , Sendai , Japan
| |
Collapse
|
7
|
Peng Z, Takeshita M, Shibata N, Tada H, Tanaka Y, Kaneko J. Rim domain loops of staphylococcal β-pore forming bi-component toxin S-components recognize target human erythrocytes in a coordinated manner. J Biochem 2018; 164:93-102. [PMID: 29474554 DOI: 10.1093/jb/mvy030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/07/2018] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus bi-component pore-forming toxins consist of S- and F-components, and form hetero-octameric beta-barrel pores on target blood cell membranes. Among them, γ-haemolysin (Hlg2 and F-component of Luk (LukF)) and LukED (LukE and LukD) possess haemolytic activity, whereas the Panton-Valentine leukocidin (LukS-PV and LukF-PV) does not lyse human erythrocytes. Here, we focussed on four loop structures in the rim domain of S-component, namely loops -1, -2, -3 and -4, and found that replacement of Loop-4 in both Hlg2 and LukE with that of LukS-PV abolished their haemolytic activity. Furthermore, LukS-PV gained haemolytic activity by Loop-4 exchange with Hlg2 or LukE, suggesting that Loop-4 of these S-components determined erythrocyte specificity. LOOP-1 and -2 enhanced the erythrocytes-binding ability of both components. Although Hlg2 and LukE recognize Duffy antigen receptor for chemokines on human erythrocytes, the ability of Loop-4 was not complementary between Hlg2 and LukE. Exchange of Hlg2 with LukE Loop-4 showed weaker activity than intact Hlg2, and LukE mutant with Hlg2 Loop-4 lost its haemolytic activity in combination of LukD. Interestingly, the haemolytic activities of these Loop-4 exchange mutants were affected by F-component, namely LukF enhanced haemolytic activities of these Hlg2 and LukE Loop-4 mutants, and also haemolytic activity of LukS-PV mutant with LukE Loop-4.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
| | - Miyu Takeshita
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
| | - Nao Shibata
- Exploratory Research Laboratories, Tsukuba Research Institute, ONO Pharmaceutical Co., LTD, 17-2 Wadai, Tsukuba 300-4247, Japan
| | - Hideaki Tada
- Exploratory Research Laboratories, Tsukuba Research Institute, ONO Pharmaceutical Co., LTD, 17-2 Wadai, Tsukuba 300-4247, Japan
| | - Yoshikazu Tanaka
- Laboratory of Applied Biological Molecular Science, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Jun Kaneko
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
| |
Collapse
|
8
|
Structure and Function of the Two-Component Cytotoxins of Staphylococcus aureus - Learnings for Designing Novel Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 966:15-35. [PMID: 28455832 DOI: 10.1007/5584_2016_200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus can produce up to five different bi-component cytotoxins: two gamma-hemolysins HlgAB and HlgCB, and leukocidins SF-PV (Panton Valentine leukocidin), ED (LukED) and GH (LukGH, also called LukAB). Their major function in S. aureus pathogenesis is to evade innate immunity by attacking phagocytic cells and to support bacterial growth by lysing red blood cells. The five cytotoxins display different levels of amino acid sequence conservation (30-82%), but all form a remarkably similar beta-barrel type pore structure (greatly resembling the mono-component toxin alpha-hemolysin) that inserts into the target cell membrane leading to necrotic cell death. This review provides an overview of the culmination of decades of research on the structure of these toxins, their unique sequence and structural features that helps to explain the observed functional differences, such as toxin potency towards different cell types and species, receptor specificity and formation of functional non-cognate toxin pairs. The vast knowledge accumulated in this field supports novel approaches and the design of therapeutics targeting these cytotoxins to tame virulence and fight S. aureus infections.
Collapse
|
9
|
Reyes-Robles T, Torres VJ. Staphylococcus aureus Pore-Forming Toxins. Curr Top Microbiol Immunol 2016; 409:121-144. [PMID: 27406190 DOI: 10.1007/82_2016_16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Staphylococcus aureus (S. aureus) is a formidable foe equipped with an armamentarium of virulence factors to thwart host defenses and establish a successful infection. Among these virulence factors, S. aureus produces several potent secreted proteins that act as cytotoxins, predominant among them the beta-barrel pore-forming toxins. These toxins play several roles in pathogenesis, including disruption of cellular adherens junctions at epithelial barriers, alteration of intracellular signaling events, modulation of host immune responses, and killing of eukaryotic immune and non-immune cells. This chapter provides an updated overview on the S. aureus beta-barrel pore-forming cytotoxins, the identification of toxin receptors on host cells, and their roles in pathogenesis.
Collapse
Affiliation(s)
- Tamara Reyes-Robles
- Department of Microbiology, Microbial Pathogenesis Program, New York University School of Medicine, 522 First Avenue, Smilow Research Building, Room 1010, New York, NY, 10016, USA
| | - Victor J Torres
- Department of Microbiology, Microbial Pathogenesis Program, New York University School of Medicine, 522 First Avenue, Smilow Research Building, Room 1010, New York, NY, 10016, USA.
| |
Collapse
|
10
|
The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 2015; 78:199-230. [PMID: 24847020 DOI: 10.1128/mmbr.00055-13] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability to produce water-soluble proteins with the capacity to oligomerize and form pores within cellular lipid bilayers is a trait conserved among nearly all forms of life, including humans, single-celled eukaryotes, and numerous bacterial species. In bacteria, some of the most notable pore-forming molecules are protein toxins that interact with mammalian cell membranes to promote lysis, deliver effectors, and modulate cellular homeostasis. Of the bacterial species capable of producing pore-forming toxic molecules, the Gram-positive pathogen Staphylococcus aureus is one of the most notorious. S. aureus can produce seven different pore-forming protein toxins, all of which are believed to play a unique role in promoting the ability of the organism to cause disease in humans and other mammals. The most diverse of these pore-forming toxins, in terms of both functional activity and global representation within S. aureus clinical isolates, are the bicomponent leucocidins. From the first description of their activity on host immune cells over 100 years ago to the detailed investigations of their biochemical function today, the leucocidins remain at the forefront of S. aureus pathogenesis research initiatives. Study of their mode of action is of immediate interest in the realm of therapeutic agent design as well as for studies of bacterial pathogenesis. This review provides an updated perspective on our understanding of the S. aureus leucocidins and their function, specificity, and potential as therapeutic targets.
Collapse
|
11
|
Badarau A, Rouha H, Malafa S, Logan DT, Håkansson M, Stulik L, Dolezilkova I, Teubenbacher A, Gross K, Maierhofer B, Weber S, Jägerhofer M, Hoffman D, Nagy E. Structure-function analysis of heterodimer formation, oligomerization, and receptor binding of the Staphylococcus aureus bi-component toxin LukGH. J Biol Chem 2014; 290:142-56. [PMID: 25371205 DOI: 10.1074/jbc.m114.598110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The bi-component leukocidins of Staphylococcus aureus are important virulence factors that lyse human phagocytic cells and contribute to immune evasion. The γ-hemolysins (HlgAB and HlgCB) and Panton-Valentine leukocidin (PVL or LukSF) were shown to assemble from soluble subunits into membrane-bound oligomers on the surface of target cells, creating barrel-like pore structures that lead to cell lysis. LukGH is the most distantly related member of this toxin family, sharing only 30-40% amino acid sequence identity with the others. We observed that, unlike other leukocidin subunits, recombinant LukH and LukG had low solubility and were unable to bind to target cells, unless both components were present. Using biolayer interferometry and intrinsic tryptophan fluorescence we detected binding of LukH to LukG in solution with an affinity in the low nanomolar range and dynamic light scattering measurements confirmed formation of a heterodimer. We elucidated the structure of LukGH by x-ray crystallography at 2.8-Å resolution. This revealed an octameric structure that strongly resembles that reported for HlgAB, but with important structural differences. Structure guided mutagenesis studies demonstrated that three salt bridges, not found in other bi-component leukocidins, are essential for dimer formation in solution and receptor binding. We detected weak binding of LukH, but not LukG, to the cellular receptor CD11b by biolayer interferometry, suggesting that in common with other members of this toxin family, the S-component has the primary contact role with the receptor. These new insights provide the basis for novel strategies to counteract this powerful toxin and Staphylococcus aureus pathogenesis.
Collapse
Affiliation(s)
- Adriana Badarau
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Harald Rouha
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Stefan Malafa
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Derek T Logan
- SARomics Biostructures AB, Medicon Village, S-223 81 Lund, Sweden
| | - Maria Håkansson
- SARomics Biostructures AB, Medicon Village, S-223 81 Lund, Sweden
| | - Lukas Stulik
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Ivana Dolezilkova
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Astrid Teubenbacher
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Karin Gross
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Barbara Maierhofer
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Susanne Weber
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Michaela Jägerhofer
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - David Hoffman
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Eszter Nagy
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| |
Collapse
|
12
|
Identification of a crucial residue required for Staphylococcus aureus LukAB cytotoxicity and receptor recognition. Infect Immun 2013; 82:1268-76. [PMID: 24379286 DOI: 10.1128/iai.01444-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The bicomponent leukotoxins produced by Staphylococcus aureus kill host immune cells through osmotic lysis by forming β-barrel pores in the host plasma membrane. The current model for bicomponent pore formation proposes that octameric pores, comprised of two separate secreted polypeptides (S and F subunits), are assembled from water-soluble monomers in the extracellular milieu and multimerize on target cell membranes. However, it has yet to be determined if all staphylococcal bicomponent leukotoxin family members exhibit these properties. In this study, we report that leukocidin A/B (LukAB), the most divergent member of the leukotoxin family, exists as a heterodimer in solution rather than two separate monomeric subunits. Notably, this property was found to be associated with enhanced toxin activity. LukAB also differs from the other bicomponent leukotoxins in that the S subunit (LukA) contains 33- and 10-amino-acid extensions at the N and C termini, respectively. Truncation mutagenesis revealed that deletion of the N terminus resulted in a modest increase in LukAB cytotoxicity, whereas the deletion of the C terminus rendered the toxin inactive. Within the C terminus of LukA, we identified a glutamic acid at position 323 that is critical for LukAB cytotoxicity. Furthermore, we discovered that this residue is conserved and required for the interaction between LukAB and its cellular target CD11b. Altogether, these findings provide an in-depth analysis of how LukAB targets neutrophils and identify novel targets suitable for the rational design of anti-LukAB inhibitors.
Collapse
|
13
|
Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components. Proc Natl Acad Sci U S A 2011; 108:17314-9. [PMID: 21969538 DOI: 10.1073/pnas.1110402108] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Staphylococcal γ-hemolysin is a bicomponent pore-forming toxin composed of LukF and Hlg2. These proteins are expressed as water-soluble monomers and then assemble into the oligomeric pore form on the target cell. Here, we report the crystal structure of the octameric pore form of γ-hemolysin at 2.5 Å resolution, which is the first high-resolution structure of a β-barrel transmembrane protein composed of two proteins reported to date. The octameric assembly consists of four molecules of LukF and Hlg2 located alternately in a circular pattern, which explains the biochemical data accumulated over the past two decades. The structure, in combination with the monomeric forms, demonstrates the elaborate molecular machinery involved in pore formation by two different molecules, in which interprotomer electrostatic interactions using loops connecting β2 and β3 (loop A: Asp43-Lys48 of LukF and Lys37-Lys43 of Hlg2) play pivotal roles as the structural determinants for assembly through unwinding of the N-terminal β-strands (amino-latch) of the adjacent protomer, releasing the transmembrane stem domain folded into a β-sheet in the monomer (prestem), and interaction with the adjacent protomer.
Collapse
|
14
|
The aromatic ring of phenylalanine 334 is essential for oligomerization of Vibrio vulnificus hemolysin. J Bacteriol 2009; 192:568-74. [PMID: 19897654 DOI: 10.1128/jb.01049-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus hemolysin (VVH) is thought to be a member of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins. To date, the structure-function relationships of CDCs produced by Gram-negative bacteria remain largely unknown. We show here that the aromatic ring of phenylalanine residue conserved in Vibrionaceae hemolysins is essential for oligomerization of VVH. We generated the VVH mutants; substituted Phe 334 for Ile (F334I), Ala (F334A), Tyr (F334Y), or Trp (F334W); and tested their binding and oligomerizing activity on Chinese hamster ovary cells. Binding in all mutants fell by approximately 50% compared with that in the wild type. Oligomerizing activities were completely eliminated in F334I and F334A mutants, whereas this ability was partially retained in F334Y and F334W mutants. These findings indicate that both hydrophobicity and an aromatic ring residue at the 334th position were needed for full binding activity and that the oligomerizing activity of this toxin was dependent on the existence of an aromatic ring residue at the 334th position. Our findings might help further understanding of the structure-and-function relationships in Vibrionaceae hemolysins.
Collapse
|
15
|
Analysis of the specificity of Panton-Valentine leucocidin and gamma-hemolysin F component binding. Infect Immun 2008; 77:266-73. [PMID: 18838523 DOI: 10.1128/iai.00402-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, the binding of F components of the staphylococcal bicomponent leukotoxins Panton-Valentine leucocidin (LukF-PV) and gamma-hemolysin (HlgB) on polymorphonuclear neutrophils (PMNs), monocytes, and lymphocytes was determined using labeled mutants and flow cytometry. Leukotoxin activity was evaluated by measuring Ca(2+) entry or pore formation using spectrofluorometry or flow cytometry. Although HlgB had no affinity for cells in the absence of an S component, LukF-PV had high affinity for PMNs (dissociation constant [K(d)], 6.2 +/- 1.9 nM; n = 8), monocytes (K(d), 2.8 +/- 0.8 nM; n = 7), and lymphocytes (K(d), 1.2 +/- 0.2 nM; n = 7). Specific binding of HlgB was observed only after addition of LukS-PV on PMNs (K(d), 1.1 +/- 0.2 nM; n = 4) and monocytes (K(d), 0.84 +/- 0.31 nM; n = 4) or after addition of HlgC on PMNs, monocytes, and lymphocytes. Addition of LukS-PV or HlgC induced a second specific binding of LukF-PV on PMNs. HlgB and LukD competed only with LukF-PV molecules bound after addition of LukS-PV. LukF-PV and LukD competed with HlgB in the presence of LukS-PV on PMNs and monocytes. Use of antibodies and comparisons between binding and activity time courses showed that the LukF-PV molecules that bound to target cells before addition of LukS-PV were the only LukF-PV molecules responsible for Ca(2+) entry and pore formation. In contrast, the active HlgB molecules were the HlgB molecules bound after addition of LukS-PV. In conclusion, LukF-PV must be linked to LukS-PV and to a binding site of the membrane to have toxin activity.
Collapse
|
16
|
Nguyen VT, Higuchi H, Kamio Y. Controlling pore assembly of staphylococcal gamma-haemolysin by low temperature and by disulphide bond formation in double-cysteine LukF mutants. Mol Microbiol 2002; 45:1485-98. [PMID: 12354220 DOI: 10.1046/j.1365-2958.2002.03125.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Staphylococcal LukF and Hlg2 are water-soluble monomers of gamma-haemolysin that assemble into oligomeric pores on the erythrocyte membranes. Here, we have created double-cysteine LukF mutants, in which single disulphide bonds connect either the prestem domain and the cap domain (V12C-T136C, Cap-Stem), or two beta-strands within the prestem domain (T117C-T136C, Stem-Stem) to control pore assembly of gamma-haemolysin at intermediate stages. The disulphide-trapped mutants were inactive in erythrocyte lysis, but gained full haemolytic activity if the disulphide bonds were reduced. The disulphide bonds blocked neither the membrane binding ability nor the intermediate prepore oligomerization, but efficiently inhibited the transition from prepores to pores. The prepores of Cap-Stem were dissociated into monomers in 1% SDS. In contrast, the prepores of Stem-Stem were stable in SDS and had ring-shaped structures similar to those of wild-type LukF, as observed by transmission electron microscopy. The transition of both mutants from prepores to pores could even be achieved by reducing disulphide bonds at low temperature (2 degrees C), whereas prepore oligomerization was effectively inhibited by low temperature. Finally, real-time transition of Stem-Stem from prepores to pores on ghost cells, visualized using a Ca2+-sensitive fluorescent indicator (Rhod2), was shown by the sequential appearance of fluorescence spots, indicating pore-opening events. Taken together, these data indicate that the prepores are legitimate intermediates during gamma-haemolysin pore assembly, and that conformational changes around residues 117 and 136 of the prestem domain are essential for pore formation, but not for membrane binding or prepore oligomerization. We propose a mechanism for gamma-haemolysin pore assembly based on the demonstrated intermediates.
Collapse
Affiliation(s)
- Vananh T Nguyen
- Department of Molecular and Cell Biology, School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|