1
|
Borkunov GV, Leshchenko EV, Berdyshev DV, Popov RS, Chingizova EA, Shlyk NP, Gerasimenko AV, Kirichuk NN, Khudyakova YV, Chausova VE, Antonov AS, Kalinovsky AI, Chingizov AR, Yurchenko EA, Isaeva MP, Yurchenko AN. New piperazine derivatives helvamides B-C from the marine-derived fungus Penicillium velutinum ZK-14 uncovered by OSMAC (One Strain Many Compounds) strategy. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:32. [PMID: 38769256 PMCID: PMC11106049 DOI: 10.1007/s13659-024-00449-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024]
Abstract
Four extracts of the marine-derived fungus Penicillium velutinum J.F.H. Beyma were obtained via metal ions stress conditions based on the OSMAC (One Strain Many Compounds) strategy. Using a combination of modern approaches such as LC/UV, LC/MS and bioactivity data analysis, as well as in silico calculations, influence metal stress factors to change metabolite profiles Penicillium velutinum were analyzed. From the ethyl acetate extract of the P. velutinum were isolated two new piperazine derivatives helvamides B (1) and C (2) together with known saroclazin A (3) (4S,5R,7S)-4,11-dihydroxy-guaia-1(2),9(10)-dien (4). Their structures were established based on spectroscopic methods. The absolute configuration of helvamide B (1) as 2R,5R was determined by a combination of the X-ray analysis and by time-dependent density functional theory (TD-DFT) calculations of electronic circular dichroism (ECD) spectra. The cytotoxic activity of the isolated compounds against human prostate cancer PC-3 and human embryonic kidney HEK-293 cells and growth inhibition activity against yeast-like fungi Candida albicans were assayed.
Collapse
Affiliation(s)
- Gleb V Borkunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
- Far Eastern Federal University, Vladivostok, 690922, Russian Federation
| | - Elena V Leshchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation.
- Far Eastern Federal University, Vladivostok, 690922, Russian Federation.
| | - Dmitrii V Berdyshev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Roman S Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Ekaterina A Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Nadezhda P Shlyk
- Far Eastern Federal University, Vladivostok, 690922, Russian Federation
| | - Andrey V Gerasimenko
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Natalya N Kirichuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Yuliya V Khudyakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Viktoria E Chausova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Alexandr S Antonov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Anatoly I Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Artur R Chingizov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Ekaterina A Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Marina P Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Anton N Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| |
Collapse
|
2
|
Pham MT, Yang FL, Liu IC, Liang PH, Lin HC. Non-Heme Iron Enzymes Catalyze Heterobicyclic and Spirocyclic Isoquinolone Core Formation in Piperazine Alkaloid Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202401324. [PMID: 38499463 DOI: 10.1002/anie.202401324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
We report the discovery and biosynthesis of new piperazine alkaloids-arizonamides, and their derived compounds-arizolidines, featuring heterobicyclic and spirocyclic isoquinolone skeletons, respectively. Their biosynthetic pathway involves two crucial non-heme iron enzymes, ParF and ParG, for core skeleton construction. ParF has a dual function facilitating 2,3-alkene formation of helvamide, as a substrate for ParG, and oxidative cleavage of piperazine. Notably, ParG exhibits catalytic versatility in multiple oxidative reactions, including cyclization and ring reconstruction. A key amino acid residue Phe67 was characterized to control the formation of the constrained arizonamide B backbone by ParG.
Collapse
Affiliation(s)
- Mai-Truc Pham
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan R.O.C
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan R.O.C
| | - I-Chen Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan R.O.C
| | - Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan R.O.C
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan R.O.C
| |
Collapse
|
3
|
Nutt MJ, Annear JW, Jones KD, Flematti GR, Moggach SA, Stewart SG. Dirhodium-Catalyzed Transannulation of N-Sulfonyl-1,2,3-triazoles to 2,3-Dehydropiperazines. J Org Chem 2023; 88:11968-11979. [PMID: 37523269 DOI: 10.1021/acs.joc.3c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The dirhodium(II)-catalyzed synthesis of a range of C2-substituted 2,3-dehydropiperazines using 1-mesyl-1,2,3-triazoles and β-haloalkylcarbamates is reported. The reaction is proposed to proceed through an α-imino rhodium carbene 1,3-insertion into N-H followed by a base-mediated cyclization. C-Substituted dehydropiperazines can also be conducted directly from terminal alkynes in a three-step, one-pot operation, forming the triazole in situ. This methodology has also been expanded to afford several 2,5-disubstituted 2,3-dehydropiperazines as well as a larger 4,5,6,7-tetrahydro-1H-1,4-diazepine derivative.
Collapse
Affiliation(s)
- Michael J Nutt
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jack W Annear
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Kieran D Jones
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Gavin R Flematti
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Stephen A Moggach
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Scott G Stewart
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
4
|
Nicoletti R, Andolfi A, Becchimanzi A, Salvatore MM. Anti-Insect Properties of Penicillium Secondary Metabolites. Microorganisms 2023; 11:1302. [PMID: 37317276 PMCID: PMC10221605 DOI: 10.3390/microorganisms11051302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023] Open
Abstract
In connection with their widespread occurrence in diverse environments and ecosystems, fungi in the genus Penicillium are commonly found in association with insects. In addition to some cases possibly implying a mutualistic relationship, this symbiotic interaction has mainly been investigated to verify the entomopathogenic potential in light of its possible exploitation in ecofriendly strategies for pest control. This perspective relies on the assumption that entomopathogenicity is often mediated by fungal products and that Penicillium species are renowned producers of bioactive secondary metabolites. Indeed, a remarkable number of new compounds have been identified and characterized from these fungi in past decades, the properties and possible applications of which in insect pest management are reviewed in this paper.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy;
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (M.M.S.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (M.M.S.)
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| |
Collapse
|
5
|
Wang R, Piggott AM, Chooi YH, Li H. Discovery, bioactivity and biosynthesis of fungal piperazines. Nat Prod Rep 2023; 40:387-411. [PMID: 36374102 DOI: 10.1039/d2np00070a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Covering: up to the end of July, 2022Fungi are prolific producers of piperazine alkaloids, which have been shown to exhibit an array of remarkable biological activities. Since the first fungal piperazine, herquline A, was reported from Penicillium herquei Fg-372 in 1979, a plethora of structurally diverse piperazines have been isolated and characterised from various fungal strains. Significant advancements have been made in recent years towards unravelling the biosynthesis of fungal piperazines and numerous synthetic routes have been proposed. This review provides a comprehensive summary of the current knowledge of the discovery, classification, bioactivity and biosynthesis of piperazine alkaloids reported from fungi, and discusses the perspectives for exploring the structural diversity of fungal piperazines via genome mining of the untapped piperazine biosynthetic pathways.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China.
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Hang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China.
| |
Collapse
|
6
|
da Silva FMR, Paggi GM, Brust FR, Macedo AJ, Silva DB. Metabolomic Strategies to Improve Chemical Information from OSMAC Studies of Endophytic Fungi. Metabolites 2023; 13:metabo13020236. [PMID: 36837855 PMCID: PMC9961420 DOI: 10.3390/metabo13020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Metabolomics strategies are important tools to get holistic chemical information from a system, but they are scarcely applied to endophytic fungi to understand their chemical profiles of biosynthesized metabolites. Here Penicillium sp. was cultured using One Strain Many Compounds (OSMAC) conditions as a model system to demonstrate how this strategy can help in understanding metabolic profiles and determining bioactive metabolites with the application of metabolomics and statistical analyses, as well as molecular networking. Penicillium sp. was fermented in different culture media and the crude extracts from mycelial biomass (CEm) and broth (CEb) were obtained, evaluated against bacterial strains (Staphylococcus aureus and Pseudomonas aeruginosa), and the metabolomic profiles by LC-DAD-MS were obtained and chemometrics statistical analyses were applied. The CEm and CEb extracts presented different chemical profiles and antibacterial activities; the highest activities observed were against S. aureus from CEm (MIC = 16, 64, and 128 µg/mL). The antibacterial properties from the extracts were impacted for culture media from which the strain was fermented. From the Volcano plot analysis, it was possible to determine statistically the most relevant features for the antibacterial activity, which were also confirmed from biplots of PCA as strong features for the bioactive extracts. These compounds included 75 (13-oxoverruculogen isomer), 78 (austalide P acid), 87 (austalide L or W), 88 (helvamide), 92 (viridicatumtoxin A), 96 (austalide P), 101 (dihydroaustalide K), 106 (austalide k), 110 (spirohexaline), and 112 (pre-viridicatumtoxin). Thus, these features included diketopiperazines, meroterpenoids, and polyketides, such as indole alkaloids, austalides, and viridicatumtoxin A, a rare tetracycline.
Collapse
Affiliation(s)
- Fernanda Motta Ribeiro da Silva
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Gecele Matos Paggi
- Laboratory of Ecology and Evolutionary Biology (LEBio), Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Flávia Roberta Brust
- Biofilms and Diversity Laboratory, Faculty of Pharmacy and Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Alexandre José Macedo
- Biofilms and Diversity Laboratory, Faculty of Pharmacy and Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
- Correspondence:
| |
Collapse
|
7
|
Akiyama DY, Rocha MC, Costa JH, Teles CB, da Silva Zuccoli G, Malavazi I, Fill TP. The Penicillium brasilianum Histone Deacetylase Clr3 Regulates Secondary Metabolite Production and Tolerance to Oxidative Stress. J Fungi (Basel) 2022; 8:jof8050514. [PMID: 35628769 PMCID: PMC9146837 DOI: 10.3390/jof8050514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Most of the biosynthetic gene clusters (BGCs) found in microbes are silent under standard laboratory cultivation conditions due to the lack of expression triggering stimuli, representing a considerable drawback in drug discovery. To access the full biosynthetic potential, studies towards the activation of cryptic BGCs are essential. Histone acetylation status is an important regulator of chromatin structure, which impacts cell physiology and the expression of BGCs. In this study, clr3, a gene encoding a histone deacetylase in Penicillium brasilianum LaBioMMi 136, is deleted and associated phenotypic and metabolic changes are evaluated. The results indicate reduced growth under oxidative stress conditions in the ∆clr3 strain, higher intracellular reactive oxygen species (ROS) levels, and a different transcriptional profile of 13 ROS-related genes of both strains under basal and ROS-induced conditions. Moreover, the production of 14 secondary metabolites, including austin-related meroterpenoids, brasiliamides, verruculogen, penicillic acid, and cyclodepsipeptides was evaluated in the ∆clr3 strain, most of them being reduced. Accordingly, the addition of epigenetic modulators responsible for HDAC inhibition into P. brasilianum’s growth media also culminated in the reduction in secondary metabolite production. The results suggest that Clr3 plays an essential role in secondary metabolite biosynthesis in P. brasilianum, thus offering new strategies for the regulation of natural product synthesis by assessing chromatin modification.
Collapse
Affiliation(s)
- Daniel Yuri Akiyama
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas 13083-970, SP, Brazil; (D.Y.A.); (J.H.C.)
| | - Marina Campos Rocha
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil;
| | - Jonas Henrique Costa
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas 13083-970, SP, Brazil; (D.Y.A.); (J.H.C.)
| | - Caroline Brandão Teles
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas 13083-970, SP, Brazil; (C.B.T.); (G.d.S.Z.)
| | - Giuliana da Silva Zuccoli
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas 13083-970, SP, Brazil; (C.B.T.); (G.d.S.Z.)
| | - Iran Malavazi
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil;
- Correspondence: (I.M.); (T.P.F.)
| | - Taicia Pacheco Fill
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas 13083-970, SP, Brazil; (D.Y.A.); (J.H.C.)
- Correspondence: (I.M.); (T.P.F.)
| |
Collapse
|
8
|
Chrysosporazines Revisited: Regioisomeric Phenylpropanoid Piperazine P-Glycoprotein Inhibitors from Australian Marine Fish-Derived Fungi. Molecules 2022; 27:molecules27103172. [PMID: 35630649 PMCID: PMC9146134 DOI: 10.3390/molecules27103172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
A library of fungi previously recovered from the gastrointestinal tract (GIT) of several fresh, commercially sourced Australian mullet fish was re-profiled for production of a rare class of phenylpropanoid piperazine alkaloids (chrysosporazines) using an integrated platform of; (i) miniaturized 24-well plate cultivation profiling (MATRIX), (ii) UPLC-DAD and UPLC-QTOF-MS/MS (GNPS) chemical profiling, and; (iii) precursor directed biosynthesis to manipulate in situ biosynthetic performance and outputs; to detect two new fungal producers of chrysosporazines. Chemical analysis of an optimized PDA solid phase cultivation of Aspergillus sp. CMB-F661 yielded the new regioisomeric chrysosporazine T (1) and U (2), while precursor directed cultivation amplified production and yielded the very minor new natural products azachrysosporazine T1 (3) and U1 (4), and the new unnatural analogues neochrysosporazine R (5) and S (6). Likewise, chemical analysis of an optimized M1 solid phase cultivation of Spiromastix sp. CMB-F455 lead to the GNPS detection of multiple chrysosporazines and brasiliamides, and the isolation and structure elucidation of chrysosporazine D (7) and brasiliamide A (8). Access to new chrysosporazine regioisomers facilitated structure activity relationship investigations to better define the chrysosporazine P-glycoprotein (P-gp) inhibitory pharmacophore, which is exceptionally potent at reversing doxorubrin resistance in P-gp over expressing colon carcinoma cells (SW600 Ad300).
Collapse
|
9
|
de Sá JDM, Kumla D, Dethoup T, Kijjoa A. Bioactive Compounds from Terrestrial and Marine-Derived Fungi of the Genus Neosartorya †. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072351. [PMID: 35408769 PMCID: PMC9000665 DOI: 10.3390/molecules27072351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022]
Abstract
Fungi comprise the second most species-rich organism group after that of insects. Recent estimates hypothesized that the currently reported fungal species range from 3.5 to 5.1 million types worldwide. Fungi can grow in a wide range of habitats, from the desert to the depths of the sea. Most develop in terrestrial environments, but several species live only in aquatic habitats, and some live in symbiotic relationships with plants, animals, or other fungi. Fungi have been proved to be a rich source of biologically active natural products, some of which are clinically important drugs such as the β-lactam antibiotics, penicillin and cephalosporin, the immunosuppressant, cyclosporine, and the cholesterol-lowering drugs, compactin and lovastatin. Given the estimates of fungal biodiversity, it is easy to perceive that only a small fraction of fungi worldwide have ever been investigated regarding the production of biologically valuable compounds. Traditionally, fungi are classified primarily based on the structures associated with sexual reproduction. Thus, the genus Neosartorya (Family Trichocomaceae) is the telemorphic (sexual state) of the Aspergillus section known as Fumigati, which produces both a sexual state with ascospores and an asexual state with conidiospores, while the Aspergillus species produces only conidiospores. However, according to the Melbourne Code of nomenclature, only the genus name Aspergillus is to be used for both sexual and asexual states. Consequently, the genus name Neosartorya was no longer to be used after 1 January 2013. Nevertheless, the genus name Neosartorya is still used for the fungi that had already been taxonomically classified before the new rule was in force. Another aspect is that despite the small number of species (23 species) in the genus Neosartorya, and although less than half of them have been investigated chemically, the chemical diversity of this genus is impressive. Many chemical classes of compounds, some of which have unique scaffolds, such as indole alkaloids, peptides, meroterpenes, and polyketides, have been reported from its terrestrial, marine-derived, and endophytic species. Though the biological and pharmacological activities of a small fraction of the isolated metabolites have been investigated due to the available assay systems, they exhibited relevant biological and pharmacological activities, such as anticancer, antibacterial, antiplasmodial, lipid-lowering, and enzyme-inhibitory activities.
Collapse
Affiliation(s)
- Joana D. M. de Sá
- Laboratório de Química Orgânica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Decha Kumla
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Tida Dethoup
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10240, Thailand;
| | - Anake Kijjoa
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Correspondence: ; Tel.: +351-22-042-8331; Fax: +351-22-206-2232
| |
Collapse
|
10
|
Design, synthesis and biochemical evaluation of novel 2-amino-3-(7-methoxybenzo[d][1,3]dioxol-5-yl)propanoic acid using Horseradish peroxidase (HRP) activity, cellular ROS inhibition and molecular docking study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Li H, Lacey AE, Shu S, Kalaitzis JA, Vuong D, Crombie A, Hu J, Gilchrist CLM, Lacey E, Piggott AM, Chooi YH. Hancockiamides: phenylpropanoid piperazines from Aspergillus hancockii are biosynthesised by a versatile dual single-module NRPS pathway. Org Biomol Chem 2021; 19:587-595. [DOI: 10.1039/d0ob02243h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The hancockiamides are an unusual new family of N-cinnamoylated piperazines from the Australian soil fungus Aspergillus hancockii, originating from mixed nonribosomal peptide and phenylpropanoid pathways.
Collapse
Affiliation(s)
- Hang Li
- School of Molecular Sciences
- The University of Western Australia
- Perth
- Australia
| | | | - Si Shu
- School of Molecular Sciences
- The University of Western Australia
- Perth
- Australia
| | | | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd
- Smithfield
- Australia
| | - Andrew Crombie
- Microbial Screening Technologies Pty. Ltd
- Smithfield
- Australia
| | - Jinyu Hu
- School of Molecular Sciences
- The University of Western Australia
- Perth
- Australia
| | | | - Ernest Lacey
- Microbial Screening Technologies Pty. Ltd
- Smithfield
- Australia
- Department of Molecular Sciences
- Macquarie University
| | | | - Yit-Heng Chooi
- School of Molecular Sciences
- The University of Western Australia
- Perth
- Australia
| |
Collapse
|
12
|
Yuan B, Liu D, Guan X, Yan Y, Zhang J, Zhang Y, Yang D, Ma M, Lin W. Piperazine ring formation by a single-module NRPS and cleavage by an α-KG-dependent nonheme iron dioxygenase in brasiliamide biosynthesis. Appl Microbiol Biotechnol 2020; 104:6149-6159. [PMID: 32436033 DOI: 10.1007/s00253-020-10678-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022]
Abstract
Brasiliamides are a class of piperazine-containing alkaloids produced by Penicillium brasilianum with a range of pharmaceutical activities. The mechanism of brasiliamide biosynthesis, including piperazine ring formation and multiple tailoring modifications, still remains unclear. In this study, the biosynthetic gene cluster of brasiliamides, brs, was identified from the marine-derived fungal strain Penicillium brasilianum WZXY-M122-9. Deletion of a histone deacetylase-encoding gene using a CRISPR/Cas9 gene editing system led to the production of a new compound, namely brasiliamide I (1). The brs-encoded single-module nonribosomal peptide synthetase (NRPS) BrsA is involved in the formation of the piperazine skeleton of brasiliamides. Full-length BrsA protein (113.6 kDa) was purified, and reconstitution of enzymatic activity in vitro confirmed that BrsA stereoselectively accepts L-phenylalanine as the substrate. Multiple deletion of tailoring genes and analysis of purified proteins in vitro enabled us to propose a brasiliamide biosynthetic pathway. In the tailoring steps, an α-ketoglutarate (KG)-dependent nonheme iron dioxygenase, BrsJ, was identified to catalyze piperazine ring cleavage during biosynthesis of brasiliamide A (2). KEY POINTS: The gene cluster encoding brasiliamide biosynthesis, brs, is identified. Deletion of a histone deacetylase-encoding gene produces brasiliamide I. BrsA catalyzes brasiliamide piperazine skeleton formation. BrsJ catalyzes piperazine ring cleavage to produce brasiliamide A. Graphical abstract.
Collapse
Affiliation(s)
- Bochuan Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Xin Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Yunchen Yan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Jianping Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Yiping Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, MNR, Xiamen, 361005, People's Republic of China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China. .,Institute of Ocean Research, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
13
|
Paluka J, Kanokmedhakul K, Soytong M, Soytong K, Yahuafai J, Siripong P, Kanokmedhakul S. Meroterpenoid pyrones, alkaloid and bicyclic brasiliamide from the fungus Neosartorya hiratsukae. Fitoterapia 2020; 142:104485. [DOI: 10.1016/j.fitote.2020.104485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 02/04/2023]
|
14
|
Houbraken J, Kocsubé S, Visagie C, Yilmaz N, Wang XC, Meijer M, Kraak B, Hubka V, Bensch K, Samson R, Frisvad J. Classification of Aspergillus, Penicillium, Talaromyces and related genera ( Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud Mycol 2020; 95:5-169. [PMID: 32855739 PMCID: PMC7426331 DOI: 10.1016/j.simyco.2020.05.002] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Eurotiales is a relatively large order of Ascomycetes with members frequently having positive and negative impact on human activities. Species within this order gain attention from various research fields such as food, indoor and medical mycology and biotechnology. In this article we give an overview of families and genera present in the Eurotiales and introduce an updated subgeneric, sectional and series classification for Aspergillus and Penicillium. Finally, a comprehensive list of accepted species in the Eurotiales is given. The classification of the Eurotiales at family and genus level is traditionally based on phenotypic characters, and this classification has since been challenged using sequence-based approaches. Here, we re-evaluated the relationships between families and genera of the Eurotiales using a nine-gene sequence dataset. Based on this analysis, the new family Penicillaginaceae is introduced and four known families are accepted: Aspergillaceae, Elaphomycetaceae, Thermoascaceae and Trichocomaceae. The Eurotiales includes 28 genera: 15 genera are accommodated in the Aspergillaceae (Aspergillago, Aspergillus, Evansstolkia, Hamigera, Leiothecium, Monascus, Penicilliopsis, Penicillium, Phialomyces, Pseudohamigera, Pseudopenicillium, Sclerocleista, Warcupiella, Xerochrysium and Xeromyces), eight in the Trichocomaceae (Acidotalaromyces, Ascospirella, Dendrosphaera, Rasamsonia, Sagenomella, Talaromyces, Thermomyces, Trichocoma), two in the Thermoascaceae (Paecilomyces, Thermoascus) and one in the Penicillaginaceae (Penicillago). The classification of the Elaphomycetaceae was not part of this study, but according to literature two genera are present in this family (Elaphomyces and Pseudotulostoma). The use of an infrageneric classification system has a long tradition in Aspergillus and Penicillium. Most recent taxonomic studies focused on the sectional level, resulting in a well-established sectional classification in these genera. In contrast, a series classification in Aspergillus and Penicillium is often outdated or lacking, but is still relevant, e.g., the allocation of a species to a series can be highly predictive in what functional characters the species might have and might be useful when using a phenotype-based identification. The majority of the series in Aspergillus and Penicillium are invalidly described and here we introduce a new series classification. Using a phylogenetic approach, often supported by phenotypic, physiologic and/or extrolite data, Aspergillus is subdivided in six subgenera, 27 sections (five new) and 75 series (73 new, one new combination), and Penicillium in two subgenera, 32 sections (seven new) and 89 series (57 new, six new combinations). Correct identification of species belonging to the Eurotiales is difficult, but crucial, as the species name is the linking pin to information. Lists of accepted species are a helpful aid for researchers to obtain a correct identification using the current taxonomic schemes. In the most recent list from 2014, 339 Aspergillus, 354 Penicillium and 88 Talaromyces species were accepted. These numbers increased significantly, and the current list includes 446 Aspergillus (32 % increase), 483 Penicillium (36 % increase) and 171 Talaromyces (94 % increase) species, showing the large diversity and high interest in these genera. We expanded this list with all genera and species belonging to the Eurotiales (except those belonging to Elaphomycetaceae). The list includes 1 187 species, distributed over 27 genera, and contains MycoBank numbers, collection numbers of type and ex-type cultures, subgenus, section and series classification data, information on the mode of reproduction, and GenBank accession numbers of ITS, beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) gene sequences.
Collapse
Key Words
- Acidotalaromyces Houbraken, Frisvad & Samson
- Acidotalaromyces lignorum (Stolk) Houbraken, Frisvad & Samson
- Ascospirella Houbraken, Frisvad & Samson
- Ascospirella lutea (Zukal) Houbraken, Frisvad & Samson
- Aspergillus chaetosartoryae Hubka, Kocsubé & Houbraken
- Classification
- Evansstolkia Houbraken, Frisvad & Samson
- Evansstolkia leycettana (H.C. Evans & Stolk) Houbraken, Frisvad & Samson
- Hamigera brevicompacta (H.Z. Kong) Houbraken, Frisvad & Samson
- Infrageneric classification
- New combinations, series
- New combinations, species
- New genera
- New names
- New sections
- New series
- New taxa
- Nomenclature
- Paecilomyces lagunculariae (C. Ram) Houbraken, Frisvad & Samson
- Penicillaginaceae Houbraken, Frisvad & Samson
- Penicillago kabunica (Baghd.) Houbraken, Frisvad & Samson
- Penicillago mirabilis (Beliakova & Milko) Houbraken, Frisvad & Samson
- Penicillago moldavica (Milko & Beliakova) Houbraken, Frisvad & Samson
- Phialomyces arenicola (Chalab.) Houbraken, Frisvad & Samson
- Phialomyces humicoloides (Bills & Heredia) Houbraken, Frisvad & Samson
- Phylogeny
- Polythetic classes
- Pseudohamigera Houbraken, Frisvad & Samson
- Pseudohamigera striata (Raper & Fennell) Houbraken, Frisvad & Samson
- Talaromyces resinae (Z.T. Qi & H.Z. Kong) Houbraken & X.C. Wang
- Talaromyces striatoconidius Houbraken, Frisvad & Samson
- Taxonomic novelties: New family
- Thermoascus verrucosus (Samson & Tansey) Houbraken, Frisvad & Samson
- Thermoascus yaguchii Houbraken, Frisvad & Samson
- in Aspergillus: sect. Bispori S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- in Aspergillus: ser. Acidohumorum Houbraken & Frisvad
- in Aspergillus: ser. Inflati (Stolk & Samson) Houbraken & Frisvad
- in Penicillium: sect. Alfrediorum Houbraken & Frisvad
- in Penicillium: ser. Adametziorum Houbraken & Frisvad
- in Penicillium: ser. Alutacea (Pitt) Houbraken & Frisvad
- sect. Crypta Houbraken & Frisvad
- sect. Eremophila Houbraken & Frisvad
- sect. Formosana Houbraken & Frisvad
- sect. Griseola Houbraken & Frisvad
- sect. Inusitata Houbraken & Frisvad
- sect. Lasseniorum Houbraken & Frisvad
- sect. Polypaecilum Houbraken & Frisvad
- sect. Raperorum S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Silvatici S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Vargarum Houbraken & Frisvad
- ser. Alliacei Houbraken & Frisvad
- ser. Ambigui Houbraken & Frisvad
- ser. Angustiporcata Houbraken & Frisvad
- ser. Arxiorum Houbraken & Frisvad
- ser. Atramentosa Houbraken & Frisvad
- ser. Aurantiobrunnei Houbraken & Frisvad
- ser. Avenacei Houbraken & Frisvad
- ser. Bertholletiarum Houbraken & Frisvad
- ser. Biplani Houbraken & Frisvad
- ser. Brevicompacta Houbraken & Frisvad
- ser. Brevipedes Houbraken & Frisvad
- ser. Brunneouniseriati Houbraken & Frisvad
- ser. Buchwaldiorum Houbraken & Frisvad
- ser. Calidousti Houbraken & Frisvad
- ser. Canini Houbraken & Frisvad
- ser. Carbonarii Houbraken & Frisvad
- ser. Cavernicolarum Houbraken & Frisvad
- ser. Cervini Houbraken & Frisvad
- ser. Chevalierorum Houbraken & Frisvad
- ser. Cinnamopurpurea Houbraken & Frisvad
- ser. Circumdati Houbraken & Frisvad
- ser. Clavigera Houbraken & Frisvad
- ser. Conjuncti Houbraken & Frisvad
- ser. Copticolarum Houbraken & Frisvad
- ser. Coremiiformes Houbraken & Frisvad
- ser. Corylophila Houbraken & Frisvad
- ser. Costaricensia Houbraken & Frisvad
- ser. Cremei Houbraken & Frisvad
- ser. Crustacea (Pitt) Houbraken & Frisvad
- ser. Dalearum Houbraken & Frisvad
- ser. Deflecti Houbraken & Frisvad
- ser. Egyptiaci Houbraken & Frisvad
- ser. Erubescentia (Pitt) Houbraken & Frisvad
- ser. Estinogena Houbraken & Frisvad
- ser. Euglauca Houbraken & Frisvad
- ser. Fennelliarum Houbraken & Frisvad
- ser. Flavi Houbraken & Frisvad
- ser. Flavipedes Houbraken & Frisvad
- ser. Fortuita Houbraken & Frisvad
- ser. Fumigati Houbraken & Frisvad
- ser. Funiculosi Houbraken & Frisvad
- ser. Gallaica Houbraken & Frisvad
- ser. Georgiensia Houbraken & Frisvad
- ser. Goetziorum Houbraken & Frisvad
- ser. Gracilenta Houbraken & Frisvad
- ser. Halophilici Houbraken & Frisvad
- ser. Herqueorum Houbraken & Frisvad
- ser. Heteromorphi Houbraken & Frisvad
- ser. Hoeksiorum Houbraken & Frisvad
- ser. Homomorphi Houbraken & Frisvad
- ser. Idahoensia Houbraken & Frisvad
- ser. Implicati Houbraken & Frisvad
- ser. Improvisa Houbraken & Frisvad
- ser. Indica Houbraken & Frisvad
- ser. Japonici Houbraken & Frisvad
- ser. Jiangxiensia Houbraken & Frisvad
- ser. Kalimarum Houbraken & Frisvad
- ser. Kiamaensia Houbraken & Frisvad
- ser. Kitamyces Houbraken & Frisvad
- ser. Lapidosa (Pitt) Houbraken & Frisvad
- ser. Leporum Houbraken & Frisvad
- ser. Leucocarpi Houbraken & Frisvad
- ser. Livida Houbraken & Frisvad
- ser. Longicatenata Houbraken & Frisvad
- ser. Macrosclerotiorum Houbraken & Frisvad
- ser. Monodiorum Houbraken & Frisvad
- ser. Multicolores Houbraken & Frisvad
- ser. Neoglabri Houbraken & Frisvad
- ser. Neonivei Houbraken & Frisvad
- ser. Nidulantes Houbraken & Frisvad
- ser. Nigri Houbraken & Frisvad
- ser. Nivei Houbraken & Frisvad
- ser. Nodula Houbraken & Frisvad
- ser. Nomiarum Houbraken & Frisvad
- ser. Noonimiarum Houbraken & Frisvad
- ser. Ochraceorosei Houbraken & Frisvad
- ser. Olivimuriarum Houbraken & Frisvad
- ser. Osmophila Houbraken & Frisvad
- ser. Paradoxa Houbraken & Frisvad
- ser. Paxillorum Houbraken & Frisvad
- ser. Penicillioides Houbraken & Frisvad
- ser. Phoenicea Houbraken & Frisvad
- ser. Pinetorum (Pitt) Houbraken & Frisvad
- ser. Polypaecilum Houbraken & Frisvad
- ser. Pulvini Houbraken & Frisvad
- ser. Quercetorum Houbraken & Frisvad
- ser. Raistrickiorum Houbraken & Frisvad
- ser. Ramigena Houbraken & Frisvad
- ser. Restricti Houbraken & Frisvad
- ser. Robsamsonia Houbraken & Frisvad
- ser. Rolfsiorum Houbraken & Frisvad
- ser. Roseopurpurea Houbraken & Frisvad
- ser. Rubri Houbraken & Frisvad
- ser. Salinarum Houbraken & Frisvad
- ser. Samsoniorum Houbraken & Frisvad
- ser. Saturniformia Houbraken & Frisvad
- ser. Scabrosa Houbraken & Frisvad
- ser. Sclerotigena Houbraken & Frisvad
- ser. Sclerotiorum Houbraken & Frisvad
- ser. Sheariorum Houbraken & Frisvad
- ser. Simplicissima Houbraken & Frisvad
- ser. Soppiorum Houbraken & Frisvad
- ser. Sparsi Houbraken & Frisvad
- ser. Spathulati Houbraken & Frisvad
- ser. Spelaei Houbraken & Frisvad
- ser. Speluncei Houbraken & Frisvad
- ser. Spinulosa Houbraken & Frisvad
- ser. Stellati Houbraken & Frisvad
- ser. Steyniorum Houbraken & Frisvad
- ser. Sublectatica Houbraken & Frisvad
- ser. Sumatraensia Houbraken & Frisvad
- ser. Tamarindosolorum Houbraken & Frisvad
- ser. Teporium Houbraken & Frisvad
- ser. Terrei Houbraken & Frisvad
- ser. Thermomutati Houbraken & Frisvad
- ser. Thiersiorum Houbraken & Frisvad
- ser. Thomiorum Houbraken & Frisvad
- ser. Unguium Houbraken & Frisvad
- ser. Unilaterales Houbraken & Frisvad
- ser. Usti Houbraken & Frisvad
- ser. Verhageniorum Houbraken & Frisvad
- ser. Versicolores Houbraken & Frisvad
- ser. Virgata Houbraken & Frisvad
- ser. Viridinutantes Houbraken & Frisvad
- ser. Vitricolarum Houbraken & Frisvad
- ser. Wentiorum Houbraken & Frisvad
- ser. Westlingiorum Houbraken & Frisvad
- ser. Whitfieldiorum Houbraken & Frisvad
- ser. Xerophili Houbraken & Frisvad
- series Tularensia (Pitt) Houbraken & Frisvad
Collapse
Affiliation(s)
- J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - S. Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - X.-C. Wang
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - M. Meijer
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - B. Kraak
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine Technical University of Denmark, Søltofts Plads, B. 221, Kongens Lyngby, DK 2800, Denmark
| |
Collapse
|
15
|
Elbanna AH, Khalil ZG, Bernhardt PV, Capon RJ. Chrysosporazines A–E: P-Glycoprotein Inhibitory Piperazines from an Australian Marine Fish Gastrointestinal Tract-Derived Fungus, Chrysosporium sp. CMB-F214. Org Lett 2019; 21:8097-8100. [DOI: 10.1021/acs.orglett.9b03094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmed H. Elbanna
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
16
|
Paluka J, Kanokmedhakul K, Soytong M, Soytong K, Kanokmedhakul S. Meroditerpene pyrone, tryptoquivaline and brasiliamide derivatives from the fungus Neosartorya pseudofischeri. Fitoterapia 2019; 137:104257. [DOI: 10.1016/j.fitote.2019.104257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
|
17
|
Matsuda K. Okaramines and other plant fungal products as new insecticide leads. CURRENT OPINION IN INSECT SCIENCE 2018; 30:67-72. [PMID: 30553487 DOI: 10.1016/j.cois.2018.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 06/09/2023]
Abstract
Okaramine were indole alkaloids discovered from products of Penicillium simplicissimum AK-40 in soy bean pulp 'okara'. Okaramines exhibit insecticidal activity on a broad range of insects. Hence, more insecticide leads were explored by fermenting the other fungi with okara, resulting in the isolations of meroterpenes and cyclic peptides as well as indole alkaloids with distinct skeletons. Most okaramines activate l-glutamate-gated chloride channels found only in invertebrate nervous systems and muscle cells. Other fungal products selectively modulate other invertebrate ligand-gated chloride channels. Recently, the okaramine biosynthetic pathway has been elucidated, providing new insights in structural features important for activity. Enhanced production of okaramine in okara points to the involvement of plant mediators in the production of insect modulators by plant associated microorganisms in the rhizosphere as a novel defense strategy.
Collapse
Affiliation(s)
- Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
18
|
Draft Genome Sequence of the Fungus Penicillium brasilianum (Strain LaBioMMi 136), a Plant Endophyte from Melia azedarach. Microbiol Resour Announc 2018; 7:MRA01235-18. [PMID: 30533840 PMCID: PMC6284728 DOI: 10.1128/mra.01235-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/03/2018] [Indexed: 11/20/2022] Open
Abstract
Penicillium brasilianum (strain LaBioMMi 136) has been reported to be a great producer of secondary metabolites and a source of enzymes of biotechnological interest. Here, we report the draft genome sequence of P. brasilianum (strain LaBioMMi 136), isolated as an endophyte from the plant Melia azedarach (family Meliaceae). Penicillium brasilianum (strain LaBioMMi 136) has been reported to be a great producer of secondary metabolites and a source of enzymes of biotechnological interest. Here, we report the draft genome sequence of P. brasilianum (strain LaBioMMi 136), isolated as an endophyte from the plant Melia azedarach (family Meliaceae).
Collapse
|
19
|
Abstract
Over the past few years Penicillium brasilianum has been isolated from many different environmental sources as soil isolates, plant endophytes and onion pathogen. All investigated strains share a great ability to produce bioactive secondary metabolites. Different authors have investigated this great capability and here we summarize the metabolic potential and the biological activities related to P. brasilianum’s metabolites with diverse structures. They include secondary metabolites of an alkaloid nature, i.e., 2,5-diketopiperazines, cyclodepsipeptides, meroterpenoids and polyketides. Penicillium brasilianum is also described as a great source of enzymes with biotechnological application potential, which is also highlighted in this review. Additionally, this review will focus on several aspects of Penicillium brasilianum and interesting genomic insights.
Collapse
|
20
|
Liu ZG, Bao L, Liu HW, Ren JW, Wang WZ, Wang L, Li W, Yin WB. Chemical diversity from the Tibetan Plateau fungi Penicillium kongii and P. brasilianum. Mycology 2017; 9:10-19. [PMID: 30123656 PMCID: PMC6059045 DOI: 10.1080/21501203.2017.1331937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/14/2017] [Indexed: 02/06/2023] Open
Abstract
Two new secondary metabolites, kongiilines A and B (1, 7), and two asperphenamate derivatives, asperphenamates B and C (5–6), together with 16 known compounds (2–4, 8–20), were isolated from Tibetan Plateau fungi Penicillium kongii and Penicillium brasilianum. This is the first report on asperphenamates B and C as naturally occurring compounds, and that aspterric acid is isolated from P. brasilianum for the first time. Their structures were elucidated by different spectroscopic techniques including high-resolution electrospray ionisation mass spectrum, 1D nuclear magnetic resonance (NMR), and 2D NMR as well as electronic circular dichroism. Compounds 4, 5, and 10 exhibited cytotoxicity activities against human colon carcinoma HCT116 cell line with IC50 values of 88.16, 77.68, and 36.92 μM, respectively. Fungi from Tibetan Plateau represent important and rich resources for the investigation of new chemicals.
Collapse
Affiliation(s)
- Zhi-Guo Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Bao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Wei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jin-Wei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Zhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Aspergillus hancockii sp. nov., a biosynthetically talented fungus endemic to southeastern Australian soils. PLoS One 2017; 12:e0170254. [PMID: 28379953 PMCID: PMC5381763 DOI: 10.1371/journal.pone.0170254] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/29/2016] [Indexed: 12/18/2022] Open
Abstract
Aspergillus hancockii sp. nov., classified in Aspergillus subgenus Circumdati section Flavi, was originally isolated from soil in peanut fields near Kumbia, in the South Burnett region of southeast Queensland, Australia, and has since been found occasionally from other substrates and locations in southeast Australia. It is phylogenetically and phenotypically related most closely to A. leporis States and M. Chr., but differs in conidial colour, other minor features and particularly in metabolite profile. When cultivated on rice as an optimal substrate, A. hancockii produced an extensive array of 69 secondary metabolites. Eleven of the 15 most abundant secondary metabolites, constituting 90% of the total area under the curve of the HPLC trace of the crude extract, were novel. The genome of A. hancockii, approximately 40 Mbp, was sequenced and mined for genes encoding carbohydrate degrading enzymes identified the presence of more than 370 genes in 114 gene clusters, demonstrating that A. hancockii has the capacity to degrade cellulose, hemicellulose, lignin, pectin, starch, chitin, cutin and fructan as nutrient sources. Like most Aspergillus species, A. hancockii exhibited a diverse secondary metabolite gene profile, encoding 26 polyketide synthase, 16 nonribosomal peptide synthase and 15 nonribosomal peptide synthase-like enzymes.
Collapse
|
22
|
Holighaus G, Rohlfs M. Fungal allelochemicals in insect pest management. Appl Microbiol Biotechnol 2016; 100:5681-9. [PMID: 27147531 DOI: 10.1007/s00253-016-7573-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022]
Abstract
Interactions between insects and fungi are widespread, and important mediators of these interactions are fungal chemicals that can therefore be considered as allelochemicals. Numerous studies suggest that fungal chemicals can affect insects in many different ways. Here, we apply the terminology established by insect-plant ecologists for categorizing the effect of fungal allelochemicals on insects and for evaluating the application potential of these chemicals in insect pest management. Our literature survey shows that fungal volatile and non-volatile chemicals have an enormous potential to influence insect behavior and fitness. Many of them still remain to be discovered, but some recent examples of repellents and toxins could open up new ways for developing safe insect control strategies. However, we also identified shortcomings in our understanding of the chemical ecology of insect-fungus interactions and the way they have been investigated. In particular, the mode-of-action of fungal allelochemicals has often not been appropriately designated or examined, and the way in which induction by insects affects fungal chemical diversity is poorly understood. This review should raise awareness that in-depth ecological studies of insect-fungus interactions can reveal novel allelochemicals of particular benefit for the development of innovative insect pest management strategies.
Collapse
Affiliation(s)
- Gerrit Holighaus
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August-University of Göttingen, Göttingen, Germany
- Büsgen Institute, Forest Zoology and Forest Conservation, Georg-August-University of Göttingen, Göttingen, Germany
| | - Marko Rohlfs
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August-University of Göttingen, Göttingen, Germany.
| |
Collapse
|
23
|
Peniciadametizine A, a Dithiodiketopiperazine with a Unique Spiro[furan-2,7'-pyrazino[1,2-b][1,2]oxazine] Skeleton, and a Related Analogue, Peniciadametizine B, from the Marine Sponge-Derived Fungus Penicillium adametzioides. Mar Drugs 2015; 13:3640-52. [PMID: 26058014 PMCID: PMC4483649 DOI: 10.3390/md13063640] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/24/2015] [Accepted: 05/27/2015] [Indexed: 12/14/2022] Open
Abstract
Peniciadametizine A (1); a new dithiodiketopiperazine derivative possessing a unique spiro[furan-2,7'-pyrazino[1,2-b][1,2]oxazine] skeleton, together with a highly oxygenated new analogue, peniciadametizine B (2); as well as two known compounds, brasiliamide A (3); and viridicatumtoxin (4), were isolated and identified from Penicillium adametzioides AS-53, a fungus obtained from an unidentified marine sponge. The unambiguous assignment of the relative and absolute configuration for the spiro center C-2 of compound 1 was solved by the combination of NMR and ECD measurements with Density-Functional Theory (DFT) conformational analysis and Time-Dependent Density-Functional Theory-Electronic Circular Dichroism (TDDFT-ECD) calculations. The spiro[furan-2,7'-pyrazino[1,2-b][1,2]oxazine] skeleton of 1 has not been reported yet among natural products and the biosynthetic pathway for 1 and 2 was discussed. Compounds 1 and 2 showed inhibitory activity against the pathogenic fungus Alternaria brassicae.
Collapse
|
24
|
Hayashi H. Frontier studies on highly selective bio-regulators useful for environmentally benign agricultural production. Biosci Biotechnol Biochem 2015; 79:877-87. [DOI: 10.1080/09168451.2015.1015954] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Fungal metabolites active for insects were obtained from fermentation products using okara media. The mechanisms of action of these compounds against insects were clarified using voltage clamp electrophysiology. The branching factor inducing hyphal branching in arbuscular mycorrhizal (AM) fungi was isolated from the root exudates of Lotus japonicus and identified as 5-deoxystrigol. Strigolactones were originally identified as seed germination stimulants of parasitic weeds; therefore, synthetic strigolactones were developed to exhibit the inducing activity of hyphal branching in AM fungi and diminish the stimulating activity of seed germination of parasitic weeds. Signaling molecules, acylhomoserine lactones (AHLs), in quorum sensing were identified in the fungal strain Mortierella alpina A-178, and the true producer of AHLs was clarified as symbiotic bacteria in the fungus. Since acyl-(S)-adenosylmethionine analogs may be good candidates for competitive inhibitors of AHL synthases, intermediate mimics in the biosynthesis of AHLs have been synthesized.
Collapse
Affiliation(s)
- Hideo Hayashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
25
|
Bioactive alkaloids of fungal origin. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1572-5995(05)80064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|