1
|
Králová P, Soural M. Biological properties of pyrroloquinoline and pyrroloisoquinoline derivatives. Eur J Med Chem 2024; 269:116287. [PMID: 38492334 DOI: 10.1016/j.ejmech.2024.116287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/18/2024]
Abstract
In this review, we summarize pyrroloquinoline and pyrroloisoquinoline derivatives (PQs and PIQs) that act on a broad spectrum of biological targets and are used as bacteriostatic, antiviral, plasmodial, anticancer, antidiabetic and anticoagulant agents. Many of these compounds play important roles in the study of DNA and its interactions, the regulation of the cell cycle and programmed cell death. This review involves twenty-five types of skeletally analogical compounds bearing pyrrole and (iso)quinoline scaffolds with different mutual annelations.
Collapse
Affiliation(s)
- Petra Králová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu12, 771 46, Olomouc, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu12, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
3
|
Baier A, Szyszka R. Compounds from Natural Sources as Protein Kinase Inhibitors. Biomolecules 2020; 10:biom10111546. [PMID: 33198400 PMCID: PMC7698043 DOI: 10.3390/biom10111546] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The advantage of natural compounds is their lower number of side-effects when compared to most synthetic substances. Therefore, over the past several decades, the interest in naturally occurring compounds is increasing in the search for new potent drugs. Natural compounds are playing an important role as a starting point when developing new selective compounds against different diseases. Protein kinases play a huge role in several diseases, like cancers, neurodegenerative diseases, microbial infections, or inflammations. In this review, we give a comprehensive view of natural compounds, which are/were the parent compounds in the development of more potent substances using computational analysis and SAR studies.
Collapse
Affiliation(s)
- Andrea Baier
- Department of Animal Physiology and Toxicology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
- Correspondence:
| | - Ryszard Szyszka
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
4
|
Seiler GS, Hughes CC. Progress toward the Total Synthesis of Lymphostins: Preparation of a Functionalized Tetrahydropyrrolo[4,3,2-de]quinoline and Unusual Oxidative Dimerization. J Org Chem 2019; 84:9339-9343. [DOI: 10.1021/acs.joc.9b01041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Grant S. Seiler
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Chambers C. Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Zhou D, Casavant J, Graziani EI, He H, Janso J, Loganzo F, Musto S, Tumey N, O'Donnell CJ, Dushin R. Novel PIKK inhibitor antibody-drug conjugates: Synthesis and anti-tumor activity. Bioorg Med Chem Lett 2019; 29:943-947. [PMID: 30655215 DOI: 10.1016/j.bmcl.2019.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
Novel neolymphostin-based antibody-drug conjugate (ADC) precursors were synthesized either through amide couplings between both cleavable and non-cleavable linkers and neolymphostin derivatives, or through Cu(I)-catalyzed acetylene-azide click cycloadditon between non-cleavable linkers and neolymphostin acetal derivatives. These precursors were site-specifically conjugated to cysteine mutant trastuzumab-A114C to provide neolymphostin-based ADCs. Preliminary in vitro data indicated that the corresponding ADCs were active against HER2-expressing tumor cell lines, thus providing a proof-of-concept for using neolymphostin as ADC-based anticancer agents.
Collapse
Affiliation(s)
- Dahui Zhou
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT 06340, United States.
| | - Jeffrey Casavant
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT 06340, United States
| | - Edmund I Graziani
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT 06340, United States
| | - Haiyin He
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT 06340, United States
| | - Jeffrey Janso
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT 06340, United States
| | - Frank Loganzo
- Oncology Research East, Pfizer Worldwide Research and Development, 401 North Middletown Road, Pearl River, NY 10965, United States
| | - Sylvia Musto
- Oncology Research East, Pfizer Worldwide Research and Development, 401 North Middletown Road, Pearl River, NY 10965, United States
| | - Nathan Tumey
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT 06340, United States
| | - Christopher J O'Donnell
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT 06340, United States
| | - Russell Dushin
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT 06340, United States
| |
Collapse
|
6
|
Castro-Falcón G, Seiler GS, Demir Ö, Rathinaswamy MK, Hamelin D, Hoffmann RM, Makowski SL, Letzel AC, Field SJ, Burke JE, Amaro RE, Hughes CC. Neolymphostin A Is a Covalent Phosphoinositide 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Dual Inhibitor That Employs an Unusual Electrophilic Vinylogous Ester. J Med Chem 2018; 61:10463-10472. [PMID: 30380865 PMCID: PMC6688905 DOI: 10.1021/acs.jmedchem.8b00975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Using a novel chemistry-based assay for identifying electrophilic natural products in unprocessed extracts, we identified the PI3-kinase/mTOR dual inhibitor neolymphostin A from Salinispora arenicola CNY-486. The method further showed that the vinylogous ester substituent on the neolymphostin core was the exact site for enzyme conjugation. Tandem MS/MS experiments on PI3Kα treated with the inhibitor revealed that neolymphostin covalently modified Lys802 with a shift in mass of +306 amu, corresponding to addition of the inhibitor and elimination of methanol. The binding pose of the inhibitor bound to PI3Kα was modeled, and hydrogen-deuterium exchange mass spectrometry experiments supported this model. Against a panel of kinases, neolymphostin showed good selectivity for PI3-kinase and mTOR. In addition, the natural product blocked AKT phosphorylation in live cells with an IC50 of ∼3 nM. Taken together, neolymphostin is the first reported example of a covalent kinase inhibitor from the bacterial domain of life.
Collapse
Affiliation(s)
- Gabriel Castro-Falcón
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA, 92093
- These authors contributed equally to this work
| | - Grant S. Seiler
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA, 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA, 92093
- These authors contributed equally to this work
| | - Özlem Demir
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA, 92093
| | - Manoj K. Rathinaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada, V8W 2Y2
| | - David Hamelin
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada, V8W 2Y2
| | - Reece M. Hoffmann
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada, V8W 2Y2
| | - Stefanie L. Makowski
- School of Medicine, University of California, San Diego, La Jolla, California, USA, 92093
| | - Anne-Catrin Letzel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA, 92093
| | - Seth J. Field
- School of Medicine, University of California, San Diego, La Jolla, California, USA, 92093
| | - John E. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada, V8W 2Y2
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA, 92093
| | - Chambers C. Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA, 92093
| |
Collapse
|
7
|
Another Look at Pyrroloiminoquinone Alkaloids-Perspectives on Their Therapeutic Potential from Known Structures and Semisynthetic Analogues. Mar Drugs 2017; 15:md15040098. [PMID: 28353633 PMCID: PMC5408244 DOI: 10.3390/md15040098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/15/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
This study began with the goal of identifying constituents from Zyzzya fuliginosa extracts that showed selectivity in our primary cytotoxicity screen against the PANC-1 tumor cell line. During the course of this project, which focused on six Z. fuliginosa samples collected from various regions of the Indo-Pacific, known compounds were obtained consisting of nine makaluvamine and three damirone analogues. Four new acetylated derivatives were also prepared. High-accuracy electrospray ionization mass spectrometry (HAESI-MS) m/z ions produced through MS2 runs were obtained and interpreted to provide a rapid way for dereplicating isomers containing a pyrrolo[4,3,2-de]quinoline core. In vitro human pancreas/duct epithelioid carcinoma (PANC-1) cell line IC50 data was obtained for 16 compounds and two therapeutic standards. These results along with data gleaned from the literature provided useful structure activity relationship conclusions. Three structural motifs proved to be important in maximizing potency against PANC-1: (i) conjugation within the core of the ABC-ring; (ii) the presence of a positive charge in the C-ring; and (iii) inclusion of a 4-ethyl phenol or 4-ethyl phenol acetate substituent off the B-ring. Two compounds, makaluvamine J (9) and 15-O-acetyl makaluvamine J (15), contained all three of these frameworks and exhibited the best potency with IC50 values of 54 nM and 81 nM, respectively. These two most potent analogs were then tested against the OVCAR-5 cell line and the presence of the acetyl group increased the potency 14-fold from that of 9 whose IC50 = 120 nM vs. that of 15 having IC50 = 8.6 nM.
Collapse
|
8
|
Yang C, Chen X, Tang T, He Z. Annulation Reaction of 3-Acylmethylidene Oxindoles with Huisgen Zwitterions and Its Applications in the Syntheses of Pyrrolo[4,3,2-de]quinolinones and Marine Alkaloids Ammosamides. Org Lett 2016; 18:1486-9. [DOI: 10.1021/acs.orglett.6b00456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Changjiang Yang
- The State
Key Laboratory
of Elemento-Organic Chemistry and Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Xiangyu Chen
- The State
Key Laboratory
of Elemento-Organic Chemistry and Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Tong Tang
- The State
Key Laboratory
of Elemento-Organic Chemistry and Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Zhengjie He
- The State
Key Laboratory
of Elemento-Organic Chemistry and Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
9
|
Yu FC, Zhou B, Xu H, Li YM, Lin J, Yan SJ, Shen Y. Three-component synthesis of functionalized pyrrolo[3,4-c]quinolin-1-ones by an unusual reductive cascade reaction. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.12.100] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Liu J, Hu Y, Waller DL, Wang J, Liu Q. Natural products as kinase inhibitors. Nat Prod Rep 2012; 29:392-403. [DOI: 10.1039/c2np00097k] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Miyanaga A, Janso JE, McDonald L, He M, Liu H, Barbieri L, Eustáquio AS, Fielding EN, Carter GT, Jensen PR, Feng X, Leighton M, Koehn FE, Moore BS. Discovery and assembly-line biosynthesis of the lymphostin pyrroloquinoline alkaloid family of mTOR inhibitors in Salinispora bacteria. J Am Chem Soc 2011; 133:13311-3. [PMID: 21815669 PMCID: PMC3161154 DOI: 10.1021/ja205655w] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pyrroloquinoline alkaloid family of natural products, which includes the immunosuppressant lymphostin, has long been postulated to arise from tryptophan. We now report the molecular basis of lymphostin biosynthesis in three marine Salinispora species that maintain conserved biosynthetic gene clusters harboring a hybrid nonribosomal peptide synthetase-polyketide synthase that is central to lymphostin assembly. Through a series of experiments involving gene mutations, stable isotope profiling, and natural product discovery, we report the assembly-line biosynthesis of lymphostin and nine new analogues that exhibit potent mTOR inhibitory activity.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0204
| | - Jeffrey E. Janso
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Leonard McDonald
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Min He
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Hongbo Liu
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Laurel Barbieri
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Alessandra S. Eustáquio
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Elisha N. Fielding
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0204
| | - Guy T. Carter
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Paul R. Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0204
| | - Xidong Feng
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Margaret Leighton
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Frank E. Koehn
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0204
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|