1
|
Ji XX, Zhang Q, Yang BX, Song QR, Sun ZY, Xie CY, Tang YQ. Response mechanism of ethanol-tolerant Saccharomyces cerevisiae strain ES-42 to increased ethanol during continuous ethanol fermentation. Microb Cell Fact 2025; 24:33. [PMID: 39885572 PMCID: PMC11780993 DOI: 10.1186/s12934-025-02663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Continuous fermentation offers advantages in improving production efficiency and reducing costs, making it highly competitive for industrial ethanol production. A key requirement for Saccharomyces cerevisiae strains used in this process is their tolerance to high ethanol concentrations, which enables them to adapt to continuous fermentation conditions. To explore how yeast cells respond to varying levels of ethanol stress during fermentation, a two-month continuous fermentation was conducted. Cells were collected at different ethanol concentrations (from 60 g/L to 100 g/L) for comparative transcriptomic analysis. RESULTS During continuous fermentation, as ethanol concentration increased, the expression of genes associated with cytoplasmic ribosomes, translation, and fatty acid biosynthesis progressively declined, while the expression of genes related to heat shock proteins (HSPs) and ubiquitin-mediated protein degradation gradually increased. Besides, cells exhibited distinct responses to varying ethanol concentrations. At lower ethanol concentrations (nearly 70 g/L), genes involved in mitochondrial ribosomes, oxidative phosphorylation, the tricarboxylic acid (TCA) cycle, antioxidant enzymes, ergosterol synthesis, and glycerol biosynthesis were specifically upregulated compared to those at 60 g/L. This suggests that cells enhanced respiratory energy production, ROS scavenging capacity, and the synthesis of ergosterol and glycerol to counteract stress. At relatively higher ethanol concentrations (nearly 80 g/L), genes involved in respiration and ergosterol synthesis were inhibited, while those associated with glycolysis and glycerol biosynthesis were notably upregulated. This suggests a metabolic shift from respiration towards enhanced glycerol synthesis. Interestingly, the longevity-regulating pathway seemed to play a pivotal role in mediating the cellular adaptations to different ethanol concentrations. Upon reaching an ethanol concentration of 100 g/L, the aforementioned metabolic activities were largely inhibited. Cells primarily focused on enhancing the clearance of denatured proteins to preserve cellular viability. CONCLUSIONS This study elucidated the mechanisms by which an ethanol-tolerant S. cerevisiae strain adapts to increasing ethanol concentrations during continuous fermentation. The findings suggest that the longevity-regulating pathway may play a critical role in adapting to varying ethanol stress by regulating mitochondrial respiration, glycerol synthesis, ergosterol synthesis, antioxidant enzyme, and HSPs. This work provides a novel and valuable understanding of the mechanisms that govern ethanol tolerance during continuous fermentation.
Collapse
Affiliation(s)
- Xue-Xue Ji
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China
| | - Quan Zhang
- Sinopec (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd, Dalian, Liaoning, 115045, China
| | - Bai-Xue Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China
| | - Qing-Ran Song
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu, 610065, Sichuan, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China
| |
Collapse
|
2
|
Nishida I, Nishihara S, Kaino T, Kawamukai M, Hirata D. Effect of coenzyme Q deficiency on ethanol fermentation in sake yeast. Biosci Biotechnol Biochem 2025; 89:313-318. [PMID: 39673696 DOI: 10.1093/bbb/zbae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/06/2024] [Indexed: 12/16/2024]
Abstract
Coenzyme Q (CoQ), a component of the electron transport chain, participates in aerobic respiration to produce ATP. Little is known about the relationship between CoQ and ethanol fermentation. Herein, we revealed that the deficiency or the addition of CoQ in sake yeast led to an increase or a decrease, respectively, in ethanol production rate at the early stage of fermentation.
Collapse
Affiliation(s)
- Ikuhisa Nishida
- Sakeology Center, Niigata University, Ikarashi, Niigata, Japan
| | - Shogo Nishihara
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Tomohiro Kaino
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Makoto Kawamukai
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Dai Hirata
- Sakeology Center, Niigata University, Ikarashi, Niigata, Japan
| |
Collapse
|
3
|
Rubio LS, Mohajan S, Gross DS. Heat Shock Factor 1 forms nuclear condensates and restructures the yeast genome before activating target genes. eLife 2024; 12:RP92464. [PMID: 39405097 PMCID: PMC11479590 DOI: 10.7554/elife.92464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
In insects and mammals, 3D genome topology has been linked to transcriptional states yet whether this link holds for other eukaryotes is unclear. Using both ligation proximity and fluorescence microscopy assays, we show that in Saccharomyces cerevisiae, Heat Shock Response (HSR) genes dispersed across multiple chromosomes and under the control of Heat Shock Factor (Hsf1) rapidly reposition in cells exposed to acute ethanol stress and engage in concerted, Hsf1-dependent intergenic interactions. Accompanying 3D genome reconfiguration is equally rapid formation of Hsf1-containing condensates. However, in contrast to the transience of Hsf1-driven intergenic interactions that peak within 10-20 min and dissipate within 1 hr in the presence of 8.5% (v/v) ethanol, transcriptional condensates are stably maintained for hours. Moreover, under the same conditions, Pol II occupancy of HSR genes, chromatin remodeling, and RNA expression are detectable only later in the response and peak much later (>1 hr). This contrasts with the coordinate response of HSR genes to thermal stress (39°C) where Pol II occupancy, transcription, histone eviction, intergenic interactions, and formation of Hsf1 condensates are all rapid yet transient (peak within 2.5-10 min and dissipate within 1 hr). Therefore, Hsf1 forms condensates, restructures the genome and transcriptionally activates HSR genes in response to both forms of proteotoxic stress but does so with strikingly different kinetics. In cells subjected to ethanol stress, Hsf1 forms condensates and repositions target genes before transcriptionally activating them.
Collapse
Affiliation(s)
- Linda S Rubio
- Department of Biochemistry and Molecular Biology Louisiana State University Health Sciences CenterShreveportUnited States
| | - Suman Mohajan
- Department of Biochemistry and Molecular Biology Louisiana State University Health Sciences CenterShreveportUnited States
| | - David S Gross
- Department of Biochemistry and Molecular Biology Louisiana State University Health Sciences CenterShreveportUnited States
| |
Collapse
|
4
|
Rubio LS, Mohajan S, Gross DS. Heat Shock Factor 1 forms nuclear condensates and restructures the yeast genome before activating target genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.560064. [PMID: 37808805 PMCID: PMC10557744 DOI: 10.1101/2023.09.28.560064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In insects and mammals, 3D genome topology has been linked to transcriptional states yet whether this link holds for other eukaryotes is unclear. Using both ligation proximity and fluorescence microscopy assays, we show that in Saccharomyces cerevisiae, Heat Shock Response (HSR) genes dispersed across multiple chromosomes and under the control of Heat Shock Factor (Hsf1) rapidly reposition in cells exposed to acute ethanol stress and engage in concerted, Hsf1-dependent intergenic interactions. Accompanying 3D genome reconfiguration is equally rapid formation of Hsf1-containing condensates. However, in contrast to the transience of Hsf1-driven intergenic interactions that peak within 10-20 min and dissipate within 1 h in the presence of 8.5% (v/v) ethanol, transcriptional condensates are stably maintained for hours. Moreover, under the same conditions, Pol II occupancy of HSR genes, chromatin remodeling, and RNA expression are detectable only later in the response and peak much later (>1 h). This contrasts with the coordinate response of HSR genes to thermal stress (39°C) where Pol II occupancy, transcription, histone eviction, intergenic interactions, and formation of Hsf1 condensates are all rapid yet transient (peak within 2.5-10 min and dissipate within 1 h). Therefore, Hsf1 forms condensates, restructures the genome and transcriptionally activates HSR genes in response to both forms of proteotoxic stress but does so with strikingly different kinetics. In cells subjected to ethanol stress, Hsf1 forms condensates and repositions target genes before transcriptionally activating them.
Collapse
Affiliation(s)
- Linda S. Rubio
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - Suman Mohajan
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - David S. Gross
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| |
Collapse
|
5
|
Ushiyama Y, Nishida I, Tomiyama S, Tanaka H, Kume K, Hirata D. Search for protein kinase(s) related to cell growth or viability maintenance in the presence of ethanol in budding and fission yeasts. Biosci Biotechnol Biochem 2024; 88:804-815. [PMID: 38592956 DOI: 10.1093/bbb/zbae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Alcohol fermentation comprises two phases: phase 1, alcohol fermentation occurs while yeast cells proliferate; phase 2, growth stops and alcohol fermentation continues. We categorized genes related to proliferation in low ethanol (phase 1) and viability in high ethanol (phase 2) as Alcohol Growth Ability (AGA) and Alcohol Viability (ALV), respectively. Although genes required for phase 1 are examined in budding yeast, those for phase 2 are unknown. We set conditions for ALV screening, searched for protein kinases (PKs) related to ALV in budding yeast, and expanded two screenings to fission yeast. Bub1 kinase was important for proliferation in low ethanol but not for viability in high ethanol, suggesting that the important PKs differ between the two phases. It was indeed the case. Further, 3 common PKs were identified as AGA in both yeasts, suggesting that the important cellular mechanism in phase 1 is conserved in both yeasts, at least partially.
Collapse
Affiliation(s)
- Yuto Ushiyama
- Sakeology Course, Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
| | - Ikuhisa Nishida
- Sakeology Center, Niigata University, Ikarashi, Niigata, Japan
| | - Saki Tomiyama
- Sakeology Course, Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
| | - Hitomi Tanaka
- Sakeology Course, Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
| | - Kazunori Kume
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Dai Hirata
- Sakeology Course, Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
- Sakeology Center, Niigata University, Ikarashi, Niigata, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
6
|
Pinto CM, Schnepper AP, Trindade PHE, Cardoso LH, Fioretto MN, Justulin LA, Zanelli CF, Valente GT. The joint action of yeast eisosomes and membraneless organelles in response to ethanol stress. Heliyon 2024; 10:e31561. [PMID: 38818138 PMCID: PMC11137566 DOI: 10.1016/j.heliyon.2024.e31561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Elevated ethanol concentrations in yeast affect the plasma membrane. The plasma membrane in yeast has many lipid-protein complexes, such as Pma1 (MCP), Can1 (MCC), and the eisosome complex. We investigated the response of eisosomes, MCPs, and membraneless structures to ethanol stress. We found a correlation between ethanol stress and proton flux with quick acidification of the medium. Moreover, ethanol stress influences the symporter expression in stressed cells. We also suggest that acute stress from ethanol leads to increases in eisosome size and SG number: we hypothesized that eisosomes may protect APC symporters and accumulate an mRNA decay protein in ethanol-stressed cells. Our findings suggest that the joint action of these factors may provide a protective effect on cells under ethanol stress.
Collapse
Affiliation(s)
- Camila Moreira Pinto
- Laboratory of Applied Biotechnology. São Paulo State University (UNESP). Botucatu, Brazil
| | | | - Pedro Henrique Esteves Trindade
- Department of Population Health and Pathobiology College of Veterinary Medicine, North Carolina State University (NCSU) Raleigh, USA
| | - Luiz Henrique Cardoso
- Laboratory of Applied Biotechnology. São Paulo State University (UNESP). Botucatu, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences. São Paulo State University (UNESP). Botucatu, Brazil
| | - Luís Antônio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences. São Paulo State University (UNESP). Botucatu, Brazil
| | | | | |
Collapse
|
7
|
Day AW, Kumamoto CA. Selection of ethanol tolerant strains of Candida albicans by repeated ethanol exposure results in strains with reduced susceptibility to fluconazole. PLoS One 2024; 19:e0298724. [PMID: 38377103 PMCID: PMC10878505 DOI: 10.1371/journal.pone.0298724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Candida albicans is a commensal yeast that has important impacts on host metabolism and immune function, and can establish life-threatening infections in immunocompromised individuals. Previously, C. albicans colonization has been shown to contribute to the progression and severity of alcoholic liver disease. However, relatively little is known about how C. albicans responds to changing environmental conditions in the GI tract of individuals with alcohol use disorder, namely repeated exposure to ethanol. In this study, we repeatedly exposed C. albicans to high concentrations (10% vol/vol) of ethanol-a concentration that can be observed in the upper GI tract of humans following consumption of alcohol. Following this repeated exposure protocol, ethanol small colony (Esc) variants of C. albicans isolated from these populations exhibited increased ethanol tolerance, altered transcriptional responses to ethanol, and cross-resistance/tolerance to the frontline antifungal fluconazole. These Esc strains exhibited chromosomal copy number variations and carried polymorphisms in genes previously associated with the acquisition of fluconazole resistance during human infection. This study identifies a selective pressure that can result in evolution of fluconazole tolerance and resistance without previous exposure to the drug.
Collapse
Affiliation(s)
- Andrew W. Day
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Day AW, Kumamoto CA. Selection of Ethanol Tolerant Strains of Candida albicans by Repeated Ethanol Exposure Results in Strains with Reduced Susceptibility to Fluconazole. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557677. [PMID: 37745460 PMCID: PMC10515905 DOI: 10.1101/2023.09.13.557677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Candida albicans is a commensal yeast that has important impacts on host metabolism and immune function, and can establish life-threatening infections in immunocompromised individuals. Previously, C. albicans colonization has been shown to contribute to the progression and severity of alcoholic liver disease. However, relatively little is known about how C. albicans responds to changing environmental conditions in the GI tract of individuals with alcohol use disorder, namely repeated exposure to ethanol. In this study, we repeatedly exposed C. albicans to high concentrations (10% vol/vol) of ethanol-a concentration that can be observed in the upper GI tract of humans following consumption of alcohol. Following this repeated exposure protocol, ethanol small colony (Esc) variants of C. albicans isolated from these populations exhibited increased ethanol tolerance, altered transcriptional responses to ethanol, and cross-resistance/tolerance to the frontline antifungal fluconazole. These Esc strains exhibited chromosomal copy number variations and carried polymorphisms in genes previously associated with the acquisition of fluconazole resistance during human infection. This study identifies a selective pressure that can result in evolution of fluconazole tolerance and resistance without previous exposure to the drug.
Collapse
Affiliation(s)
- Andrew W. Day
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, 02111, USA
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, 02111, USA
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, 02111, USA
| |
Collapse
|
9
|
Stanford KE, Zhao X, Kim N, Masison DC, Greene LE. Overexpression of Hsp104 by Causing Dissolution of the Prion Seeds Cures the Yeast [ PSI+] Prion. Int J Mol Sci 2023; 24:10833. [PMID: 37446010 DOI: 10.3390/ijms241310833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The yeast Sup35 protein misfolds into the infectious [PSI+] prion, which is then propagated by the severing activity of the molecular chaperone, Hsp104. Unlike other yeast prions, this prion is unique in that it is efficiently cured by the overexpression as well as the inactivation of Hsp104. However, it is controversial whether curing by overexpression is due to the dissolution of the prion seeds by the trimming activity of Hsp104 or the asymmetric segregation of the prion seeds between mother and daughter cells which requires cell division. To answer this question, we conducted experiments and found no difference in the extent of curing between mother and daughter cells when half of the cells were cured by Hsp104 overexpression in one generation. Furthermore, curing was not affected by the lack of Sir2 expression, which was reported to be required for asymmetric segregation of the [PSI+] seeds. More importantly, when either hydroxyurea or ethanol were used to inhibit cell division, the extent of curing by Hsp104 overexpression was not significantly reduced. Therefore, the curing of [PSI+] by Hsp104 overexpression is not due to asymmetric segregation of the prion seeds, but rather their dissolution by Hsp104.
Collapse
Affiliation(s)
- Katherine E Stanford
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohong Zhao
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan Kim
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lois E Greene
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Salazar Y, Valle PA, Rodríguez E, Soto-Cruz NO, Páez-Lerma JB, Reyes-Sánchez FJ. Mechanistic Modelling of Biomass Growth, Glucose Consumption and Ethanol Production by Kluyveromyces marxianus in Batch Fermentation. ENTROPY (BASEL, SWITZERLAND) 2023; 25:497. [PMID: 36981385 PMCID: PMC10047689 DOI: 10.3390/e25030497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
This paper presents results concerning mechanistic modeling to describe the dynamics and interactions between biomass growth, glucose consumption and ethanol production in batch culture fermentation by Kluyveromyces marxianus (K. marxianus). The mathematical model was formulated based on the biological assumptions underlying each variable and is given by a set of three coupled nonlinear first-order Ordinary Differential Equations. The model has ten parameters, and their values were fitted from the experimental data of 17 K. marxianus strains by means of a computational algorithm design in Matlab. The latter allowed us to determine that seven of these parameters share the same value among all the strains, while three parameters concerning biomass maximum growth rate, and ethanol production due to biomass and glucose had specific values for each strain. These values are presented with their corresponding standard error and 95% confidence interval. The goodness of fit of our system was evaluated both qualitatively by in silico experimentation and quantitative by means of the coefficient of determination and the Akaike Information Criterion. Results regarding the fitting capabilities were compared with the classic model given by the logistic, Pirt, and Luedeking-Piret Equations. Further, nonlinear theories were applied to investigate local and global dynamics of the system, the Localization of Compact Invariant Sets Method was applied to determine the so-called localizing domain, i.e., lower and upper bounds for each variable; whilst Lyapunov's stability theories allowed to establish sufficient conditions to ensure asymptotic stability in the nonnegative octant, i.e., R+,03. Finally, the predictive ability of our mechanistic model was explored through several numerical simulations with expected results according to microbiology literature on batch fermentation.
Collapse
Affiliation(s)
- Yolocuauhtli Salazar
- Postgraduate Program in Engineering, Tecnológico Nacional de México/IT Durango, Blvd. Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Paul A. Valle
- Postgraduate Program in Engineering Sciences, BioMath Research Group, Tecnológico Nacional de México/IT Tijuana, Blvd. Alberto Limón Padilla s/n, Tijuana 22454, Mexico
| | - Emmanuel Rodríguez
- Postgraduate Program in Engineering Sciences, BioMath Research Group, Tecnológico Nacional de México/IT Tijuana, Blvd. Alberto Limón Padilla s/n, Tijuana 22454, Mexico
| | - Nicolás O. Soto-Cruz
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México/IT Durango, Blvd. Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Jesús B. Páez-Lerma
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México/IT Durango, Blvd. Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Francisco J. Reyes-Sánchez
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México/IT Durango, Blvd. Felipe Pescador 1830 Ote., Durango 34080, Mexico
| |
Collapse
|
11
|
Increasing Ethanol Tolerance and Ethanol Production in an Industrial Fuel Ethanol Saccharomyces cerevisiae Strain. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The stress imposed by ethanol to Saccharomyces cerevisiae cells are one of the most challenging limiting factors in industrial fuel ethanol production. Consequently, the toxicity and tolerance to high ethanol concentrations has been the subject of extensive research, allowing the identification of several genes important for increasing the tolerance to this stress factor. However, most studies were performed with well-characterized laboratory strains, and how the results obtained with these strains work in industrial strains remains unknown. In the present work, we have tested three different strategies known to increase ethanol tolerance by laboratory strains in an industrial fuel–ethanol producing strain: the overexpression of the TRP1 or MSN2 genes, or the overexpression of a truncated version of the MSN2 gene. Our results show that the industrial CAT-1 strain tolerates up to 14% ethanol, and indeed the three strategies increased its tolerance to ethanol. When these strains were subjected to fermentations with high sugar content and cell recycle, simulating the industrial conditions used in Brazilian distilleries, only the strain with overexpression of the truncated MSN2 gene showed improved fermentation performance, allowing the production of 16% ethanol from 33% of total reducing sugars present in sugarcane molasses. Our results highlight the importance of testing genetic modifications in industrial yeast strains under industrial conditions in order to improve the production of industrial fuel ethanol by S. cerevisiae.
Collapse
|
12
|
Ribeiro RA, Bourbon-Melo N, Sá-Correia I. The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol 2022; 13:953479. [PMID: 35966694 PMCID: PMC9366716 DOI: 10.3389/fmicb.2022.953479] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
In industrial settings and processes, yeasts may face multiple adverse environmental conditions. These include exposure to non-optimal temperatures or pH, osmotic stress, and deleterious concentrations of diverse inhibitory compounds. These toxic chemicals may result from the desired accumulation of added-value bio-products, yeast metabolism, or be present or derive from the pre-treatment of feedstocks, as in lignocellulosic biomass hydrolysates. Adaptation and tolerance to industrially relevant stress factors involve highly complex and coordinated molecular mechanisms occurring in the yeast cell with repercussions on the performance and economy of bioprocesses, or on the microbiological stability and conservation of foods, beverages, and other goods. To sense, survive, and adapt to different stresses, yeasts rely on a network of signaling pathways to modulate the global transcriptional response and elicit coordinated changes in the cell. These pathways cooperate and tightly regulate the composition, organization and biophysical properties of the cell wall. The intricacy of the underlying regulatory networks reflects the major role of the cell wall as the first line of defense against a wide range of environmental stresses. However, the involvement of cell wall in the adaptation and tolerance of yeasts to multiple stresses of biotechnological relevance has not received the deserved attention. This article provides an overview of the molecular mechanisms involved in fine-tuning cell wall physicochemical properties during the stress response of Saccharomyces cerevisiae and their implication in stress tolerance. The available information for non-conventional yeast species is also included. These non-Saccharomyces species have recently been on the focus of very active research to better explore or control their biotechnological potential envisaging the transition to a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Ricardo A. Ribeiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Bourbon-Melo
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Lázari LC, Wolf IR, Schnepper AP, Valente GT. LncRNAs of Saccharomyces cerevisiae bypass the cell cycle arrest imposed by ethanol stress. PLoS Comput Biol 2022; 18:e1010081. [PMID: 35587936 PMCID: PMC9232138 DOI: 10.1371/journal.pcbi.1010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 06/24/2022] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Ethanol alters many subsystems of Saccharomyces cerevisiae, including the cell cycle. Two ethanol-responsive lncRNAs in yeast interact with cell cycle proteins, and here, we investigated the role of these RNAs in cell cycle. Our network dynamic modeling showed that higher and lower ethanol-tolerant strains undergo cell cycle arrest in mitosis and G1 phases, respectively, during ethanol stress. The higher population rebound of the lower ethanol-tolerant phenotype after stress relief responds to the late phase arrest. We found that the lncRNA lnc9136 of SEY6210 (a lower ethanol-tolerant strain) induces cells to skip mitosis arrest. Simulating an overexpression of lnc9136 and analyzing CRISPR–Cas9 mutants lacking this lncRNA suggest that lnc9136 induces a regular cell cycle even under ethanol stress, indirectly regulating Swe1p and Clb1/2 by binding to Gin4p and Hsl1p. Notably, lnc10883 of BY4742 (a higher ethanol-tolerant strain) does not prevent G1 arrest in this strain under ethanol stress. However, lnc19883 circumvents DNA and spindle damage checkpoints, maintaining a functional cell cycle by interacting with Mec1p or Bub1p even in the presence of DNA/spindle damage. Overall, we present the first evidence of direct roles for lncRNAs in regulating yeast cell cycle proteins, the dynamics of this system in different ethanol-tolerant phenotypes, and a new yeast cell cycle model. Ethanol is a cell stressor in yeast that dampen ethanol production. LncRNAs are RNAs that control many cellular processes. Computational simulations allow us to study the dynamism of cell systems. Therefore, we built a computational model of the yeast cell cycle to investigate how cells respond to ethanol stress. Simulations showed that ethanol stress or spindle damage arrests the cell cycle. Furthermore, the performance of higher and lower ethanol-tolerant strains in poststress recovery growth seems to be related to the cell cycle phase in which cells are stalled. However, two lncRNAs maintain the activity of the cell cycle even in yeast cells under these stresses by repressing specific cell cycle proteins. Finally, this model facilitates analyses of the yeast cell cycle for applied or basic science purposes.
Collapse
Affiliation(s)
- Lucas Cardoso Lázari
- Department of Parasitology, Institute of Biomedical Sciences, Sāo Paulo University (USP), Sao Paulo, Brazil
- Department of Bioprocess and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Ivan Rodrigo Wolf
- Department of Bioprocess and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu, Brazil
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Amanda Piveta Schnepper
- Department of Bioprocess and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Guilherme Targino Valente
- Department of Bioprocess and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu, Brazil
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail: ,
| |
Collapse
|
14
|
Leng W, Wu X, Shi T, Xiong Z, Yuan L, Jin W, Gao R. Untargeted Metabolomics on Skin Mucus Extract of Channa argus against Staphylococcus aureus: Antimicrobial Activity and Mechanism. Foods 2021; 10:foods10122995. [PMID: 34945546 PMCID: PMC8701811 DOI: 10.3390/foods10122995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial contamination is one of the most common food safety issues that lead to food spoilage and foodborne illness, which readily affects the health of the masses as well as gives rise to huge economic losses. In this study, Channa argus was used as a source of antimicrobial agent that was then analyzed by untargeted metabolomics for its antibacterial mechanism against Staphylococcus aureus. The results indicated that the skin mucus extract of C. argus had great inhibitory action on the growth of S. aureus, and the morphology of S. aureus cells treated with the skin mucus extract exhibited severe morphological damage under scanning electron microscopy. In addition, metabolomics analysis revealed that skin mucus extract stress inhibited the primary metabolic pathways of S. aureus by inducing the tricarboxylic acid cycle and amino acid biosynthesis, which further affected the normal physiological functions of biofilms. In conclusion, the antimicrobial effect of the skin mucus extract is achieved by disrupting cell membrane functions to induce an intracellular metabolic imbalance. Hence, these results conduce to amass novel insights into the antimicrobial mechanism of the skin mucus extract of C. argus against S. aureus.
Collapse
Affiliation(s)
- Weijun Leng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.L.); (X.W.); (T.S.); (Z.X.); (L.Y.)
| | - Xiaoyun Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.L.); (X.W.); (T.S.); (Z.X.); (L.Y.)
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.L.); (X.W.); (T.S.); (Z.X.); (L.Y.)
| | - Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.L.); (X.W.); (T.S.); (Z.X.); (L.Y.)
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.L.); (X.W.); (T.S.); (Z.X.); (L.Y.)
| | - Wengang Jin
- Bio-Resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China;
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.L.); (X.W.); (T.S.); (Z.X.); (L.Y.)
- Bio-Resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China;
- Correspondence:
| |
Collapse
|
15
|
Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol. Appl Environ Microbiol 2021; 87:e0058821. [PMID: 34105981 PMCID: PMC8315178 DOI: 10.1128/aem.00588-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High ethanol levels can severely inhibit the growth of yeast cells and fermentation productivity. The ethanologenic yeast Saccharomyces cerevisiae activates several well-defined cellular mechanisms of ethanol stress response (ESR); however, the involved regulatory control remains to be characterized. Here, we report a new transcription factor of ethanol stress adaptation called Znf1. It plays a central role in ESR by activating genes for glycerol and fatty acid production (GUP1, GPP1, GPP2, GPD1, GAT1, and OLE1) to preserve plasma membrane integrity. Importantly, Znf1 also activates genes implicated in cell wall biosynthesis (FKS1, SED1, and SMI1) and in the unfolded protein response (HSP30, HSP104, KAR1, and LHS1) to protect cells from proteotoxic stress. The znf1Δ strain displays increased sensitivity to ethanol, the endoplasmic reticulum (ER) stressor β-mercaptoethanol, and the cell wall-perturbing agent calcofluor white. To compensate for a defective cell wall, the strain lacking ZNF1 or its target SMI1 displays increased glycerol levels of 19.6% and 27.7%, respectively. Znf1 collectively regulates an intricate network of target genes essential for growth, protein refolding, and production of key metabolites. Overexpression of ZNF1 not only confers tolerance to high ethanol levels but also increases ethanol production by 4.6% (8.43 g/liter) or 2.8% (75.78 g/liter) when 2% or 20% (wt/vol) glucose, respectively, is used as a substrate, compared to that of the wild-type strain. The mutually stress-responsive transcription factors Msn2/4, Hsf1, and Yap1 are associated with some promoters of Znf1’s target genes to promote ethanol stress tolerance. In conclusion, this work implicates the novel regulator Znf1 in coordinating expression of ESR genes and illuminates the unifying transcriptional reprogramming during alcoholic fermentation. IMPORTANCE The yeast S. cerevisiae is a major microbe that is widely used in food and nonfood industries. However, accumulation of ethanol has a negative effect on its growth and limits ethanol production. The Znf1 transcription factor has been implicated as a key regulator of glycolysis and gluconeogenesis in the utilization of different carbon sources, including glucose, the most abundant sugar on earth, and nonfermentable substrates. Here, the role of Znf1 in ethanol stress response is defined. Znf1 actively reprograms expression of genes linked to the unfolded protein response (UPR), heat shock response, glycerol and carbohydrate metabolism, and biosynthesis of cell membrane and cell wall components. A complex interplay among transcription factors of ESR indicates transcriptional fine-tuning as the main mechanism of stress adaptation, and Znf1 plays a major regulatory role in the coordination. Understanding the adaptive ethanol stress mechanism is crucial to engineering robust yeast strains for enhanced stress tolerance or increased ethanol production.
Collapse
|
16
|
Zhang RR, Shi YG, Gu Q, Fang M, Chen YW, Fang S, Dang YL, Chen JS. Antimicrobial effect and mechanism of non-antibiotic alkyl gallates against Pseudomonas fluorescens on the surface of Russian sturgeon (Acipenser gueldenstaedti). Int J Food Microbiol 2021; 342:109093. [PMID: 33607540 DOI: 10.1016/j.ijfoodmicro.2021.109093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Since Pseudomonas fluorescens is the main microorganism causing severe spoilage in refrigerated aquatic products, the searching for non-antibiotic antibacterial agents effective against it continues to receive increasing interest. This study aimed to investigate the antibacterial effects and mechanisms of alkyl gallic esters against P. fluorescens isolated from the Russian sturgeon (Acipenser gueldenstaedti), as well as the effectiveness in combination with chitosan films on the preservation of sturgeon meats at 4 °C. Our data shows that the alkyl chain length plays a significant role in eliciting their antibacterial activities and octyl gallate (GAC8) exhibited an outstanding inhibitory efficacy. GAC8 can rapidly enter into the membrane lipid bilayer portion to disorder the membrane, and further inhibit the growth of the P. fluorescens through interfering both tricarboxylic acid cycle related to energy supply and amino acid metabolism associated with cell membranes, suppressing oxygen consumption and disturbing the respiration chain. Moreover, the alteration in membrane fatty acids indicated that GAC8 could disrupt the composition of cell membrane fatty acids, rendering the bacteria more sensitive to the antibacterial. The SEM results also substantiate the damage of the structure of the bacterial membrane caused by GAC8. Additionally, the edible chitosan-based films incorporated with GAC8 showed the enhanced antibacterial efficacy to remarkably extend the shelf life of Russian sturgeon. Overall, our findings not only provide new insight into the mode of action of GAC8 against P. fluorescens but also demonstrate composite films containing GAC8, as a kind of safe and antibacterial material, have a great promise for application in food preservations.
Collapse
Affiliation(s)
- Run-Run Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Mei Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Ya-Li Dang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| | - Jian-She Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
17
|
Mota MN, Martins LC, Sá-Correia I. The Identification of Genetic Determinants of Methanol Tolerance in Yeast Suggests Differences in Methanol and Ethanol Toxicity Mechanisms and Candidates for Improved Methanol Tolerance Engineering. J Fungi (Basel) 2021; 7:90. [PMID: 33513997 PMCID: PMC7911966 DOI: 10.3390/jof7020090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022] Open
Abstract
Methanol is a promising feedstock for metabolically competent yeast strains-based biorefineries. However, methanol toxicity can limit the productivity of these bioprocesses. Therefore, the identification of genes whose expression is required for maximum methanol tolerance is important for mechanistic insights and rational genomic manipulation to obtain more robust methylotrophic yeast strains. The present chemogenomic analysis was performed with this objective based on the screening of the Euroscarf Saccharomyces cerevisiae haploid deletion mutant collection to search for susceptibility phenotypes in YPD medium supplemented with 8% (v/v) methanol, at 35 °C, compared with an equivalent ethanol concentration (5.5% (v/v)). Around 400 methanol tolerance determinants were identified, 81 showing a marked phenotype. The clustering of the identified tolerance genes indicates an enrichment of functional categories in the methanol dataset not enriched in the ethanol dataset, such as chromatin remodeling, DNA repair and fatty acid biosynthesis. Several genes involved in DNA repair (eight RAD genes), identified as specific for methanol toxicity, were previously reported as tolerance determinants for formaldehyde, a methanol detoxification pathway intermediate. This study provides new valuable information on genes and potential regulatory networks involved in overcoming methanol toxicity. This knowledge is an important starting point for the improvement of methanol tolerance in yeasts capable of catabolizing and copying with methanol concentrations present in promising bioeconomy feedstocks, including industrial residues.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Luís C. Martins
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
18
|
Schalck T, den Bergh BV, Michiels J. Increasing Solvent Tolerance to Improve Microbial Production of Alcohols, Terpenoids and Aromatics. Microorganisms 2021; 9:249. [PMID: 33530454 PMCID: PMC7912173 DOI: 10.3390/microorganisms9020249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Fuels and polymer precursors are widely used in daily life and in many industrial processes. Although these compounds are mainly derived from petrol, bacteria and yeast can produce them in an environment-friendly way. However, these molecules exhibit toxic solvent properties and reduce cell viability of the microbial producer which inevitably impedes high product titers. Hence, studying how product accumulation affects microbes and understanding how microbial adaptive responses counteract these harmful defects helps to maximize yields. Here, we specifically focus on the mode of toxicity of industry-relevant alcohols, terpenoids and aromatics and the associated stress-response mechanisms, encountered in several relevant bacterial and yeast producers. In practice, integrating heterologous defense mechanisms, overexpressing native stress responses or triggering multiple protection pathways by modifying the transcription machinery or small RNAs (sRNAs) are suitable strategies to improve solvent tolerance. Therefore, tolerance engineering, in combination with metabolic pathway optimization, shows high potential in developing superior microbial producers.
Collapse
Affiliation(s)
- Thomas Schalck
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Bram Van den Bergh
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jan Michiels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
19
|
Tra Bi CY, Kouakou-Kouamé CA, N'guessan FK, Djè MK, Montet D. Phenotypic characterization of indigenous Saccharomyces cerevisiae strains associated with sorghum beer and palm wines. World J Microbiol Biotechnol 2021; 37:24. [PMID: 33427964 DOI: 10.1007/s11274-020-02990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
In order to phenotypically characterized Saccharomyces cerevisiae strains isolated from sorghum beer and palm wines for a possible selection of a starter culture, 30 strains were tested for killer activity, temperature resistance, ethanol tolerance, carbohydrate fermentation, enzyme profile and sorghum wort fermentation. Of the tested strains, three showed a killer profile, while four showed a neutral profile and 23 were found to be sensitive to K2 toxin. Temperatures of 40 °C and 44 °C allowed to distinguish strains into four thermal groups with only three strains may grow at 44 °C. Almost tested strains were tolerant to 5% ethanol with viability rates up to 73%. But at 10% and 15% ethanol, respectively 18 and 7 strains were tolerant. Carbohydrate fermentation revealed 13 fermentation profiles, including one typical and 12 atypical profiles. The typical profile strains (16.13% of the strains) fermented glucose, galactose, fructose, sucrose, maltose, trehalose and raffinose. Most of the strains secreted lipases (mainly esterase and esterase-lipase), proteases (mainly valine and cysteine arylamidase, chrymotrypsin) and phosphatases (mainly acid phosphatase and naphthol phosphohydrolase). On contrary, only five strains isolated from sorghum beer exhibited glucosidase activity, mainly α-glucosidase. The analyse of fermented sorghum wort revealed that fermentative performance is strain dependent. Furthermore, the Hierarchical Cluster Analysis showed that the strains were separated in three distinct clusters with the strains from sorghum beer clustered separately.
Collapse
Affiliation(s)
- Charles Y Tra Bi
- Institut de Recherche sur les Energies Nouvelles (IREN), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d'Ivoire
| | - Clémentine A Kouakou-Kouamé
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d'Ivoire
| | - Florent K N'guessan
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d'Ivoire.
| | - Marcellin K Djè
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d'Ivoire
| | - Didier Montet
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, UMR Qualisud, TA 95B/16, 34398, Montpellier Cedex 5, France
| |
Collapse
|
20
|
Catrileo D, Acuña-Fontecilla A, Godoy L. Adaptive Laboratory Evolution of Native Torulaspora delbrueckii YCPUC10 With Enhanced Ethanol Resistance and Evaluation in Co-inoculated Fermentation. Front Microbiol 2021; 11:595023. [PMID: 33408704 PMCID: PMC7779481 DOI: 10.3389/fmicb.2020.595023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Torulaspora delbrueckii is a yeast species typically present in the early stages of the fermentation process. T. delbrueckii positively modifies the aromatic properties of wines. However, its contribution to the final quality of the wine is restricted by its low tolerance to ethanol. T. delbrueckii is capable of fermenting and tolerating an ethanol concentration ranging from 7.4% (v/v) to slightly higher than 9% (v/v). For this reason, it cannot complete fermentation, when alcohol reach levels higher than 12% (v/v), limiting their use in the industry. The objective of this work was to obtain new variants of T. delbrueckii with improved resistance to ethanol through adaptive laboratory evolution. Variants capable of tolerating ethanol levels of 11.5% (v/v) were obtained. These presented improved kinetic parameters, and additionally showed an increase in resistance to SO2 in ethanol compared to the original strain. Co-inoculated fermentations were performed with the original strain (FTd/Sc) and with the evolved strain (FTdF/Sc), in addition to a control fermentation using only Saccharomyces cerevisiae EC1118 (FSc). The results obtained show that FTdF/Sc present higher levels of 2-Ethylhexanol, compared to FTd/Sc and FSc. Furthermore, FTdF/Sc presents higher levels of total alcohols, total aldehydes, total phenolic derivatives, and total sulfur compounds with significant differences with FSc. These results provide a T. delbrueckii YCPUC10-F yeast with higher resistance to ethanol, which can be present throughout the fermentation process and be used in co-inoculated fermentations. This would positively impact the performance of T. delbrueckii by allowing it to be present not only in the early stages of fermentation but to remain until the end of fermentation.
Collapse
Affiliation(s)
- Daniela Catrileo
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Acuña-Fontecilla
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Liliana Godoy
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
21
|
Yang J, Tavazoie S. Regulatory and evolutionary adaptation of yeast to acute lethal ethanol stress. PLoS One 2020; 15:e0239528. [PMID: 33170850 PMCID: PMC7654773 DOI: 10.1371/journal.pone.0239528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/09/2020] [Indexed: 11/19/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been the subject of many studies aimed at understanding mechanisms of adaptation to environmental stresses. Most of these studies have focused on adaptation to sub-lethal stresses, upon which a stereotypic transcriptional program called the environmental stress response (ESR) is activated. However, the genetic and regulatory factors that underlie the adaptation and survival of yeast cells to stresses that cross the lethality threshold have not been systematically studied. Here, we utilized a combination of gene expression profiling, deletion-library fitness profiling, and experimental evolution to systematically explore adaptation of S. cerevisiae to acute exposure to threshold lethal ethanol concentrations—a stress with important biotechnological implications. We found that yeast cells activate a rapid transcriptional reprogramming process that is likely adaptive in terms of post-stress survival. We also utilized repeated cycles of lethal ethanol exposure to evolve yeast strains with substantially higher ethanol tolerance and survival. Importantly, these strains displayed bulk growth-rates that were indistinguishable from the parental wild-type strain. Remarkably, these hyper-ethanol tolerant strains had reprogrammed their pre-stress gene expression states to match the likely adaptive post-stress response in the wild-type strain. Our studies reveal critical determinants of yeast survival to lethal ethanol stress and highlight potentially general principles that may underlie evolutionary adaptation to lethal stresses in general.
Collapse
Affiliation(s)
- Jamie Yang
- Department of Systems Biology, Columbia University, New York City, New York, United States of America
- Department of Biochemistry and Molecular Biology, Columbia University, New York City, New York, United States of America
| | - Saeed Tavazoie
- Department of Systems Biology, Columbia University, New York City, New York, United States of America
- Department of Biochemistry and Molecular Biology, Columbia University, New York City, New York, United States of America
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Shashkova S, Nyström T, Leake MC, Wollman AJM. Correlative single-molecule fluorescence barcoding of gene regulation in Saccharomyces cerevisiae. Methods 2020; 193:62-67. [PMID: 33086048 PMCID: PMC8343463 DOI: 10.1016/j.ymeth.2020.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 01/14/2023] Open
Abstract
Most cells adapt to their environment by switching combinations of genes on and off through a complex interplay of transcription factor proteins (TFs). The mechanisms by which TFs respond to signals, move into the nucleus and find specific binding sites in target genes is still largely unknown. Single-molecule fluorescence microscopes, which can image single TFs in live cells, have begun to elucidate the problem. Here, we show that different environmental signals, in this case carbon sources, yield a unique single-molecule fluorescence pattern of foci of a key metabolic regulating transcription factor, Mig1, in the nucleus of the budding yeast, Saccharomyces cerevisiae. This pattern serves as a 'barcode' of the gene regulatory state of the cells which can be correlated with cell growth characteristics and other biological function.
Collapse
Affiliation(s)
- Sviatlana Shashkova
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Thomas Nyström
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Mark C Leake
- Department of Physics, University of York, YO10 5DD York, United Kingdom.
| | - Adam J M Wollman
- Newcastle University Biosciences Institute, Newcastle NE2 4HH, United Kingdom.
| |
Collapse
|
23
|
Evaluation of ethanol fermentation efficiency of sweet sorghum syrups produced by integrated dual-membrane system. Bioprocess Biosyst Eng 2020; 43:1185-1194. [DOI: 10.1007/s00449-020-02313-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
|
24
|
Rpn4 and proteasome-mediated yeast resistance to ethanol includes regulation of autophagy. Appl Microbiol Biotechnol 2020; 104:4027-4041. [PMID: 32157425 DOI: 10.1007/s00253-020-10518-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/15/2020] [Accepted: 03/01/2020] [Indexed: 12/18/2022]
Abstract
Distilled spirits production using Saccharomyces cerevisiae requires understanding of the mechanisms of yeast cell response to alcohol stress. Reportedly, specific mutations in genes of the ubiquitin-proteasome system, e.g., RPN4, may result in strains exhibiting hyper-resistance to different alcohols. To study the Rpn4-dependent yeast response to short-term ethanol exposure, we performed a comparative analysis of the wild-type (WT) strain, strain with RPN4 gene deletion (rpn4-Δ), and a mutant strain with decreased proteasome activity and consequent Rpn4 accumulation due to PRE1 deregulation (YPL). The stress resistance tests demonstrated an increased sensitivity of mutant strains to ethanol compared with WT. Comparative proteomics analysis revealed significant differences in molecular responses to ethanol between these strains. GO analysis of proteins upregulated in WT showed enrichments represented by oxidative and heat responses, protein folding/unfolding, and protein degradation. Enrichment of at least one of these responses was not observed in the mutant strains. Moreover, activity of autophagy was not increased in the RPN4 deletion strain upon ethanol stress which agrees with changes in mRNA levels of ATG7 and PRB1 genes of the autophagy system. Activity of the autophagic system was clearly induced and accompanied with PRB1 overexpression in the YPL strain upon ethanol stress. We demonstrated that Rpn4 stabilization contributes to the PRB1 upregulation. CRISPR-Cas9-mediated repression of PACE-core Rpn4 binding sites in the PRB1 promoter inhibits PRB1 induction in the YPL strain upon ethanol treatment and results in YPL hypersensitivity to ethanol. Our data suggest that Rpn4 affects the autophagic system activity upon ethanol stress through the PRB1 regulation. These findings can be a basis for creating genetically modified yeast strains resistant to high levels of alcohol, being further used for fermentation in ethanol production.
Collapse
|
25
|
Xu L, Chen P, Liu T, Ren D, Dong N, Cui W, He P, Bi Y, Lv N, Ntakatsane M. A novel sensitive visual count card for detection of hygiene bio-indicator—molds and yeasts in contaminated food. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast. Cell Syst 2019; 9:534-547.e5. [DOI: 10.1016/j.cels.2019.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 08/23/2019] [Accepted: 10/18/2019] [Indexed: 02/01/2023]
|
27
|
Covre EA, Silva LFL, Bastos RG, Ceccato-Antonini SR. Interaction of 4-ethylphenol, pH, sucrose and ethanol on the growth and fermentation capacity of the industrial strain of Saccharomyces cerevisiae PE-2. World J Microbiol Biotechnol 2019; 35:136. [PMID: 31432249 DOI: 10.1007/s11274-019-2714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/11/2019] [Indexed: 11/28/2022]
Abstract
Volatile phenols such as 4-ethylphenol are produced from hydroxycinnamic acids by Dekkera bruxellensis, an important yeast contaminating alcoholic fermentations. 4-ethylphenol results from the decarboxylation and reduction of p-coumaric acid, a compound found in sugarcane musts. In wine, volatile phenols are responsible by sensorial alterations whereas in the context of bioethanol fermentation, little is known about their effects on the main yeast, Saccharomyces cerevisiae. Here we evaluated the interaction of 4-ethylphenol and pH, sucrose and ethanol on the growth and fermentation capacity of the industrial strain of S. cerevisiae PE-2. A central compound rotational design was utilized to evaluate the effect of 4-ethylphenol, pH, ethanol and sucrose concentration on the yeast maximum specific growth rate (µmax) in microplate experiments in YPS medium (Yeast extract-Peptone-Sucrose), at 30 °C. Following, single-cycle fermentations in YPS medium, pH 4.5, 17% sucrose, at 30 °C, with 4-ethylphenol in concentrations of 10 and 20 mg L-1 being added at the start or after 4 h of fermentation, were carried out. 4-ethylphenol affected µmax of S. cerevisiae in situations that resemble the conditions of industrial bioethanol production, especially the low pH of the fermentation medium and the high ethanol concentration because of the anaerobic sucrose uptake. The addition of 4-ethylphenol on fermentation resulted in significant effect on the cell yeast concentration, pH and alcohol production, with significant decrease from 86% to the range of 65-74% in the fermentative efficiency. The industrial yeast S. cerevisiae PE-2 growth and fermentative capacity were affected by the presence of 4-ethylphenol, a metabolite produced by D. bruxellensis, which may contribute to explain the impact of this yeast on bioethanol industrial production.
Collapse
Affiliation(s)
- Elizabete A Covre
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Universidade Federal de São Carlos - Centro de Ciencias Agrarias, Via Anhanguera, km 174, Araras, SP, 13600-970, Brazil
| | - Lincon F L Silva
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Universidade Federal de São Carlos - Centro de Ciencias Agrarias, Via Anhanguera, km 174, Araras, SP, 13600-970, Brazil
| | - Reinaldo G Bastos
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Universidade Federal de São Carlos - Centro de Ciencias Agrarias, Via Anhanguera, km 174, Araras, SP, 13600-970, Brazil
| | - Sandra R Ceccato-Antonini
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Universidade Federal de São Carlos - Centro de Ciencias Agrarias, Via Anhanguera, km 174, Araras, SP, 13600-970, Brazil.
| |
Collapse
|
28
|
Coordination of the Cell Wall Integrity and High-Osmolarity Glycerol Pathways in Response to Ethanol Stress in Saccharomyces cerevisiae. Appl Environ Microbiol 2019; 85:AEM.00551-19. [PMID: 31101611 DOI: 10.1128/aem.00551-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/09/2019] [Indexed: 11/20/2022] Open
Abstract
During fermentation, a high ethanol concentration is a major stress that influences the vitality and viability of yeast cells, which in turn leads to a termination of the fermentation process. In this study, we show that the BCK1 and SLT2 genes encoding mitogen-activated protein kinase kinase kinase (MAPKKK) and mitogen-activated protein kinase (MAPK) of the cell wall integrity (CWI) pathway, respectively, are essential for ethanol tolerance, suggesting that the CWI pathway is involved in the response to ethanol-induced cell wall stress. Upon ethanol exposure, the CWI pathway induces the expression of specific cell wall-remodeling genes, including FKS2, CRH1, and PIR3 (encoding β-1,3-glucan synthase, chitin transglycosylase, and O-glycosylated cell wall protein, respectively), which eventually leads to the remodeling of the cell wall structure. Our results revealed that in response to ethanol stress, the high-osmolarity glycerol (HOG) pathway plays a collaborative role with the CWI pathway in inducing cell wall remodeling via the upregulation of specific cell wall biosynthesis genes such as the CRH1 gene. Furthermore, the substantial expression of CWI-responsive genes is also triggered by external hyperosmolarity, suggesting that the adaptive changes in the cell wall are crucial for protecting yeast cells against not only cell wall stress but also osmotic stress. On the other hand, the cell wall stress-inducing agent calcofluor white has no effect on promoting the expression of GPD1, a major target gene of the HOG pathway. Collectively, these findings suggest that during ethanol stress, the CWI and HOG pathways collaboratively regulate the transcription of specific cell wall biosynthesis genes, thereby leading to adaptive changes in the cell wall.IMPORTANCE The budding yeast Saccharomyces cerevisiae has been widely used in industrial fermentations, including the production of alcoholic beverages and bioethanol. During fermentation, an increased ethanol concentration is the main stress that affects yeast metabolism and inhibits ethanol production. This work presents evidence that in response to ethanol stress, both CWI and HOG pathways cooperate to control the expression of cell wall-remodeling genes in order to build the adaptive strength of the cell wall. These findings will contribute to a better understanding of the molecular mechanisms underlying adaptive responses and tolerance of yeast to ethanol stress, which is essential for successful engineering of yeast strains for improved ethanol tolerance.
Collapse
|
29
|
Simpson-Lavy K, Kupiec M. Carbon Catabolite Repression in Yeast is Not Limited to Glucose. Sci Rep 2019; 9:6491. [PMID: 31019232 PMCID: PMC6482301 DOI: 10.1038/s41598-019-43032-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/12/2019] [Indexed: 01/18/2023] Open
Abstract
Cells adapt their gene expression and their metabolism in response to a changing environment. Glucose represses expression of genes involved in the catabolism of other carbon sources in a process known as (carbon) catabolite repression. However, the relationships between “poor” carbon sources is less characterized. Here we show that in addition to the well-characterized glucose (and galactose) repression of ADH2 (alcohol dehydrogenase 2, required for efficient utilization of ethanol as a carbon source), ADH2 expression is also inhibited by acetate which is produced during ethanol catabolism. Thus, repressive regulation of gene expression occurs also between “poor” carbon sources. Acetate repression of ADH2 expression is via Haa1, independently from the well-characterized mechanism of AMPK (Snf1) activation of Adr1. The response to extracellular acetate is attenuated when all three acetate transporters (Ady2, Fps1 and Jen1) are deleted, but these deletions do not affect the acetate response resulting from growth with glucose or ethanol as the carbon source. Furthermore, genetic manipulation of the ethanol catabolic pathway affects this response. Together, our results show that acetate is sensed intracellularly and that a hierarchical control of carbon sources exists even for “poor” carbon sources.
Collapse
Affiliation(s)
- Kobi Simpson-Lavy
- School of Molecular Cell Biology & Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology & Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel.
| |
Collapse
|
30
|
Tek EL, Sundstrom JF, Gardner JM, Oliver SG, Jiranek V. Evaluation of the ability of commercial wine yeasts to form biofilms (mats) and adhere to plastic: implications for the microbiota of the winery environment. FEMS Microbiol Ecol 2019; 94:4831476. [PMID: 29394344 DOI: 10.1093/femsec/fix188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Abstract
Commercially available active dried wine yeasts are regularly used by winemakers worldwide to achieve reliable fermentations and obtain quality wine. This practice has led to increased evidence of traces of commercial wine yeast in the vineyard, winery and uninoculated musts. The mechanism(s) that enables commercial wine yeast to persist in the winery environment and the influence to native microbial communities on this persistence is poorly understood. This study has investigated the ability of commercial wine yeasts to form biofilms and adhere to plastic. The results indicate that the biofilms formed by commercial yeasts consist of cells with a combination of different lifestyles (replicative and non-replicative) and growth modes including invasive growth, bud elongation, sporulation and a mat sectoring-like phenotype. Invasive growth was greatly enhanced on grape pulp regardless of strain, while adhesion on plastic varied between strains. The findings suggest a possible mechanism that allows commercial yeast to colonise and survive in the winery environment, which may have implications for the indigenous microbiota profile as well as the population profile in uninoculated fermentations if their dissemination is not controlled.
Collapse
Affiliation(s)
- Ee Lin Tek
- Department of Wine and Food Science, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Joanna F Sundstrom
- Department of Wine and Food Science, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Jennifer M Gardner
- Department of Wine and Food Science, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Stephen G Oliver
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Vladimir Jiranek
- Department of Wine and Food Science, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Waite Campus, Australia
| |
Collapse
|
31
|
Mechanisms of Yeast Adaptation to Wine Fermentations. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:37-59. [PMID: 30911888 DOI: 10.1007/978-3-030-13035-0_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cells face genetic and/or environmental changes in order to outlast and proliferate. Characterization of changes after stress at different "omics" levels is crucial to understand the adaptation of yeast to changing conditions. Wine fermentation is a stressful situation which yeast cells have to cope with. Genome-wide analyses extend our cellular physiology knowledge by pointing out the mechanisms that contribute to sense the stress caused by these perturbations (temperature, ethanol, sulfites, nitrogen, etc.) and related signaling pathways. The model organism, Saccharomyces cerevisiae, was studied in response to industrial stresses and changes at different cellular levels (transcriptomic, proteomic, and metabolomics), which were followed statically and/or dynamically in the short and long terms. This chapter focuses on the response of yeast cells to the diverse stress situations that occur during wine fermentations, which induce perturbations, including nutritional changes, ethanol stress, temperature stress, oxidative stress, etc.
Collapse
|
32
|
Vamvakas SS, Kapolos J, Farmakis L, Genneos F, Damianaki ME, Chouli X, Vardakou A, Liosi S, Stavropoulou E, Leivaditi E, Fragki M, Labrakou E, Gashi EG, Demoli D. Specific serine residues of Msn2/4 are responsible for regulation of alcohol fermentation rates and ethanol resistance. Biotechnol Prog 2018; 35:e2759. [PMID: 30507007 DOI: 10.1002/btpr.2759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/24/2018] [Indexed: 11/07/2022]
Abstract
Despite the fact that Saccharomyces cerevisiae has suicide tendencies since its product affects cell function, it is a key player in alcoholic fermentation. The presence of ethanol in the medium affects membrane integrity and fluidity, as well as the rate of ethanol production. The Msn2/4p transcription factors are key regulators in stress response and play a critical role in cell response to ethanol challenge. Protein kinase A (tpk1/2/3) is controlling the activation/inactivation of a multitude of proteins through phosphorylation at specific serine residues. Targets of Protein Kinase A (PKA) are also msn2/4 and phosphorylation of these two transcription factors by PKA resulting in obstruction of their translocation to the nucleus. This work attempts to reveal the significance of specific serine residues of Msn2/4p, as possible targets of PKA, through substitution of these serine residues with alanine. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2759, 2019.
Collapse
Affiliation(s)
| | - John Kapolos
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Lambros Farmakis
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Fotios Genneos
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Maria-Eleni Damianaki
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Xenia Chouli
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Aggeliki Vardakou
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Sofia Liosi
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Evgenia Stavropoulou
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Eleftheria Leivaditi
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Marianthi Fragki
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Elina Labrakou
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Eleni-Giselda Gashi
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Dimitra Demoli
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| |
Collapse
|
33
|
Saini P, Beniwal A, Kokkiligadda A, Vij S. Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Homoto S, Izawa S. Persistent actin depolarization caused by ethanol induces the formation of multiple small cortical septin rings in yeast. J Cell Sci 2018; 131:jcs.217091. [PMID: 29991513 DOI: 10.1242/jcs.217091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/03/2018] [Indexed: 11/20/2022] Open
Abstract
Short-term exposure to severe ethanol stress has adverse effects on yeast cells. However, limited information is available on the effects of long-term exposure to severe ethanol stress. In this study, we examined the effects of a long-term treatment with a high ethanol concentration [10% (v/v)] on yeast morphology. We found that long-term severe ethanol stress induced the continuous depolarization of the actin cytoskeleton and hypertrophy in yeast cells, accompanied by the aberrant localization of septins, which formed multiple small cortical rings (MSCRs). The formation of MSCRs was also induced by the continuous depolarization of the actin cytoskeleton caused by a treatment with latrunculin-A, an effective inhibitor of actin polymerization. Unlike the formation of conventional septin rings, the formation of MSCRs did not require Cdc42 and its effectors, Gic1, Gic2 and Cla4. These results provide novel insights into the effects of persistent actin depolarization caused by long-term exposure to severe ethanol stress on yeast cytomorphology.
Collapse
Affiliation(s)
- Sena Homoto
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| |
Collapse
|
35
|
Linkage mapping of yeast cross protection connects gene expression variation to a higher-order organismal trait. PLoS Genet 2018; 14:e1007335. [PMID: 29649251 PMCID: PMC5978988 DOI: 10.1371/journal.pgen.1007335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 04/24/2018] [Accepted: 03/27/2018] [Indexed: 11/19/2022] Open
Abstract
Gene expression variation is extensive in nature, and is hypothesized to play a major role in shaping phenotypic diversity. However, connecting differences in gene expression across individuals to higher-order organismal traits is not trivial. In many cases, gene expression variation may be evolutionarily neutral, and in other cases expression variation may only affect phenotype under specific conditions. To understand connections between gene expression variation and stress defense phenotypes, we have been leveraging extensive natural variation in the gene expression response to acute ethanol in laboratory and wild Saccharomyces cerevisiae strains. Previous work found that the genetic architecture underlying these expression differences included dozens of “hotspot” loci that affected many transcripts in trans. In the present study, we provide new evidence that one of these expression QTL hotspot loci affects natural variation in one particular stress defense phenotype—ethanol-induced cross protection against severe doses of H2O2. A major causative polymorphism is in the heme-activated transcription factor Hap1p, which we show directly impacts cross protection, but not the basal H2O2 resistance of unstressed cells. This provides further support that distinct cellular mechanisms underlie basal and acquired stress resistance. We also show that Hap1p-dependent cross protection relies on novel regulation of cytosolic catalase T (Ctt1p) during ethanol stress in a wild oak strain. Because ethanol accumulation precedes aerobic respiration and accompanying reactive oxygen species formation, wild strains with the ability to anticipate impending oxidative stress would likely be at an advantage. This study highlights how strategically chosen traits that better correlate with gene expression changes can improve our power to identify novel connections between gene expression variation and higher-order organismal phenotypes. A major goal in genetics is to understand how individuals with different genetic makeups respond to their environment. Understanding these “gene-environment interactions” is important for the development of personalized medicine. For example, gene-environment interactions can explain why some people are more sensitive to certain drugs or are more likely to get certain cancers. While the underlying causes of gene-environment interactions are unclear, one possibility is that differences in gene expression across individuals are responsible. In this study, we examined that possibility using baker’s yeast as a model. We were interested in a phenomenon called acquired stress resistance, where cells exposed to a mild dose of one stress can become resistant to an otherwise lethal dose of severe stress. This response is observed in diverse organisms ranging from bacteria to humans, though the specific mechanisms governing acquisition of higher stress resistance are poorly understood. To understand the differences between yeast strains with and without the ability to acquire further stress resistance, we employed genetic mapping. We found that part of the variation in acquired stress resistance was due to sequence differences in a key regulatory protein, thus providing new insight into how different individuals respond to acute environmental change.
Collapse
|
36
|
Ohsawa S, Yurimoto H, Sakai Y. Novel function of Wsc proteins as a methanol-sensing machinery in the yeast Pichia pastoris. Mol Microbiol 2017; 104:349-363. [PMID: 28127815 DOI: 10.1111/mmi.13631] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2017] [Indexed: 01/20/2023]
Abstract
Wsc family proteins are plasma membrane spanning sensor proteins conserved from yeasts to mammalian cells. We studied the functional roles of Wsc family proteins in the methylotrophic yeast Pichia pastoris, and found that PpWsc1 and PpWsc3 function as methanol-sensors during growth on methanol. PpWsc1 responds to a lower range of methanol concentrations than PpWsc3. PpWsc1, but not PpWsc3, also functions during high temperature stress, but PpWsc1 senses methanol as a signal that is distinct from high-temperature stress. We also found that PpRom2, which is known to function downstream of the Wsc family proteins in the cell wall integrity pathway, was also involved in sensing methanol. Based on these results, these PpWsc family proteins were demonstrated to be involved in sensing methanol and transmitting the signal via their cytoplasmic tail to the nucleus via PpRom2, which plays a critical role in regulating expression of a subset of methanol-inducible genes to coordinate well-balanced methanol metabolism.
Collapse
Affiliation(s)
- Shin Ohsawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Japan
| |
Collapse
|
37
|
Martins F, Mamede MEDO, Silva AFD, Guerreiro J, Lima STDC. Ultraestrutura celular e expressão de proteínas de leveduras hanseniaspora sob efeito do estresse etanólico. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2017. [DOI: 10.1590/1981-6723.6516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo O objetivo deste estudo foi avaliar a resposta de Hanseniaspora opuntiae (Ho41) e H. guilliermondii (Hg43) ao estresse etanólico, observando a ultraestrutura e o perfil de expressão proteica em concentrações crescentes de etanol. A ultraestrutura foi analisada por microscopia eletrônica de varredura (MEV) e a expressão proteica, pelo perfil eletroforético (SDS-PAGE). Na análise microscópica, as cepas em meio Yeast Malt Agar sem etanol mostraram células jovens com morfologia apiculada, brotamento bilateral e polos distais côncavos. Com o início do estresse, a 3% de etanol, as células apresentaram múltiplas cicatrizes em forma de anéis e, com 6%, alterações na integridade da parede celular, plasmólise e ativação da autólise. Na análise eletroforética, observou-se, tanto para Ho41 quanto para Hg43, aumento na expressão de um peptídeo de 100 kDa, com aumento do etanol no meio, indicando ser uma proteína de choque térmico (HSP). As HSPs vêm sendo patenteadas como marcadores de organismos de interesse biotecnológico, já que as condições necessárias para obtenção de bioprodutos muitas vezes requerem cultivo sob estresse. Neste contexto, esta proteína pode ser indicada como marcador molecular para bioprospecção ou melhoramento genético de cepas não-saccharomyces mais resistentes aos processos de fermentação, na fabricação de vinhos.
Collapse
|
38
|
Kasavi C, Eraslan S, Oner ET, Kirdar B. An integrative analysis of transcriptomic response of ethanol tolerant strains to ethanol in Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2016; 12:464-76. [PMID: 26661334 DOI: 10.1039/c5mb00622h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The accumulation of ethanol is one of the main environmental stresses that Saccharomyces cerevisiae cells are exposed to in industrial alcoholic beverage and bioethanol production processes. Despite the known impacts of ethanol, the molecular mechanisms underlying ethanol tolerance are still not fully understood. Novel gene targets leading to ethanol tolerance were previously identified via a network approach and the investigations of the deletions of these genes resulted in the improved ethanol tolerance of pmt7Δ/pmt7Δ and yhl042wΔ/yhl042wΔ strains. In the present study, an integrative system based approach was used to investigate the global transcriptional changes in these two ethanol tolerant strains in response to ethanol and hence to elucidate the mechanisms leading to the observed tolerant phenotypes. In addition to strain specific biological processes, a number of common and already reported biological processes were found to be affected in the reference and both ethanol tolerant strains. However, the integrative analysis of the transcriptome with the transcriptional regulatory network and the ethanol tolerance network revealed that each ethanol tolerant strain had a specific organization of the transcriptomic response. Transcription factors around which most important changes occur were determined and active subnetworks in response to ethanol and functional clusters were identified in all strains.
Collapse
Affiliation(s)
- Ceyda Kasavi
- Department of Chemical Engineering, Boğaziçi University, Istanbul, Turkey.
| | - Serpil Eraslan
- Department of Chemical Engineering, Boğaziçi University, Istanbul, Turkey.
| | - Ebru Toksoy Oner
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Betul Kirdar
- Department of Chemical Engineering, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|
39
|
Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress. Sci Rep 2016; 6:31311. [PMID: 27507154 PMCID: PMC4979094 DOI: 10.1038/srep31311] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/18/2016] [Indexed: 11/09/2022] Open
Abstract
Yeast cells are challenged by various environmental stresses in the process of industrial fermentation. As the currently main organism for bio-ethanol production, Saccharomyces cerevisiae suffers from ethanol stress. Some amino acids have been reported to be related to yeast tolerance to stresses. Here the relationship between arginine and yeast response to ethanol stress was investigated. Marked inhibitions of ethanol on cell growth, expression of genes involved in arginine biosynthesis and intracellular accumulation of arginine were observed. Furthermore, extracellular addition of arginine can abate the ethanol damage largely. To further confirm the protective effects of arginine on yeast cells, yeast strains with different levels of arginine content were constructed by overexpression of ARG4 involved in arginine biosynthesis or CAR1 encoding arginase. Intracellular arginine was increased by 18.9% or 13.1% respectively by overexpression of ARG4 or disruption of CAR1, which enhanced yeast tolerance to ethanol stress. Moreover, a 41.1% decrease of intracellular arginine was observed in CAR1 overexpressing strain, which made yeast cells keenly sensitive to ethanol. Further investigations indicated that arginine protected yeast cells from ethanol damage by maintaining the integrity of cell wall and cytoplasma membrane, stabilizing the morphology and function of organellae due to low ROS generation.
Collapse
|
40
|
Evidence for a Role for the Plasma Membrane in the Nanomechanical Properties of the Cell Wall as Revealed by an Atomic Force Microscopy Study of the Response of Saccharomyces cerevisiae to Ethanol Stress. Appl Environ Microbiol 2016; 82:4789-4801. [PMID: 27235439 DOI: 10.1128/aem.01213-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. IMPORTANCE Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or stiffness). We ascribed this effect to the action of ethanol perturbing the cell membrane integrity and hence proposed that the cell membrane contributes to the cell wall nanomechanical properties.
Collapse
|
41
|
Narayanan A, Pullepu D, Reddy PK, Uddin W, Kabir MA. Defects in Protein Folding Machinery Affect Cell Wall Integrity and Reduce Ethanol Tolerance in S. cerevisiae. Curr Microbiol 2016; 73:38-45. [DOI: 10.1007/s00284-016-1024-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/05/2016] [Indexed: 11/28/2022]
|
42
|
Navarro-Tapia E, Nana RK, Querol A, Pérez-Torrado R. Ethanol Cellular Defense Induce Unfolded Protein Response in Yeast. Front Microbiol 2016; 7:189. [PMID: 26925053 PMCID: PMC4757686 DOI: 10.3389/fmicb.2016.00189] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/03/2016] [Indexed: 12/05/2022] Open
Abstract
Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although, many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two S. cerevisiae strains, CECT10094, and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico) respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR) and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus, our data suggest that there is a room for ethanol tolerance improvement by enhancing UPR response.
Collapse
Affiliation(s)
- Elisabet Navarro-Tapia
- Instituto de Agroquímica y Tecnología de los Alimentos-Consejo Superior de Investigaciones Científicas Valencia, Spain
| | - Rebeca K Nana
- Instituto de Agroquímica y Tecnología de los Alimentos-Consejo Superior de Investigaciones Científicas Valencia, Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos-Consejo Superior de Investigaciones Científicas Valencia, Spain
| | - Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de los Alimentos-Consejo Superior de Investigaciones Científicas Valencia, Spain
| |
Collapse
|
43
|
Chen Z, Zheng Z, Yi C, Wang F, Niu Y, Li H. Intracellular metabolic changes in Saccharomyces cerevisiae and promotion of ethanol tolerance during the bioethanol fermentation process. RSC Adv 2016. [DOI: 10.1039/c6ra19254h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During the batch bioethanol fermentation process, although Saccharomyces cerevisiae cells are challenged by accumulated ethanol, our previous work showed that the ethanol tolerance of S. cerevisiae increased as fermentation time increased.
Collapse
Affiliation(s)
- Ze Chen
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhou Zheng
- Key Laboratory of Marine Bioactive Substance
- The First Institute of Oceanography
- State Oceanic Administration (SOA)
- Qingdao 266061
- China
| | - Chenfeng Yi
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Fenglian Wang
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yuanpu Niu
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Hao Li
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
44
|
Si HM, Zhang F, Wu AN, Han RZ, Xu GC, Ni Y. DNA microarray of global transcription factor mutant reveals membrane-related proteins involved in n-butanol tolerance in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:114. [PMID: 27252779 PMCID: PMC4888631 DOI: 10.1186/s13068-016-0527-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/11/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Escherichia coli has been explored as a platform host strain for biofuels production such as butanol. However, the severe toxicity of butanol is considered to be one major limitation for butanol production from E. coli. The goal of this study is therefore to construct butanol-tolerant E. coli strains and clarify the tolerance mechanisms. RESULTS A recombinant E. coli strain harboring σ(70) mutation capable of tolerating 2 % (v/v) butanol was isolated by the global transcription machinery engineering (gTME) approach. DNA microarrays were employed to assess the transcriptome profile of butanol-tolerant strain B8. Compared with the wild-type strain, 329 differentially expressed genes (197 up-regulated and 132 down-regulated) (p < 0.05; FC ≥ 2) were identified. These genes are involved in carbohydrate metabolism, energy metabolism, two-component signal transduction system, oxidative stress response, lipid and cell envelope biogenesis and efflux pump. CONCLUSIONS Several membrane-related proteins were proved to be involved in butanol tolerance of E. coli. Two down-regulated genes, yibT and yghW, were identified to be capable of affecting butanol tolerance by regulating membrane fatty acid composition. Another down-regulated gene ybjC encodes a predicted inner membrane protein. In addition, a number of up-regulated genes, such as gcl and glcF, contribute to supplement metabolic intermediates for glyoxylate and TCA cycles to enhance energy supply. Our results could serve as a practical strategy for the construction of platform E. coli strains as biofuel producer.
Collapse
Affiliation(s)
- Hai-Ming Si
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Fa Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - An-Ning Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Rui-Zhi Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Guo-Chao Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Ye Ni
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| |
Collapse
|
45
|
Caspeta L, Castillo T, Nielsen J. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes. Front Bioeng Biotechnol 2015; 3:184. [PMID: 26618154 PMCID: PMC4641163 DOI: 10.3389/fbioe.2015.00184] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022] Open
Abstract
Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose.
Collapse
Affiliation(s)
- Luis Caspeta
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos , Cuernavaca , Mexico
| | - Tania Castillo
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos , Cuernavaca , Mexico
| | - Jens Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , Gothenburg , Sweden ; Department of Biology and Biological Engineering, Chalmers University of Technology , Gothenburg , Sweden ; Novo Nordisk Foundation Center for Biosustainability , Hørsholm , Denmark
| |
Collapse
|
46
|
Voordeckers K, Kominek J, Das A, Espinosa-Cantú A, De Maeyer D, Arslan A, Van Pee M, van der Zande E, Meert W, Yang Y, Zhu B, Marchal K, DeLuna A, Van Noort V, Jelier R, Verstrepen KJ. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways. PLoS Genet 2015; 11:e1005635. [PMID: 26545090 PMCID: PMC4636377 DOI: 10.1371/journal.pgen.1005635] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022] Open
Abstract
Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. Organisms can evolve resistance to specific stress factors, which allows them to thrive in environments where non-adapted organisms fail to grow. However, the molecular mechanisms that underlie adaptation to complex stress factors that interfere with basic cellular processes are poorly understood. In this study, we reveal how yeast populations adapt to high ethanol concentrations, an ecologically and industrially relevant stress that is still poorly understood. We exposed six independent populations of genetically identical yeast cells to gradually increasing ethanol levels, and we monitored the changes in their DNA sequence over a two-year period. Together with novel computational analyses, we could identify the mutational dynamics and molecular mechanisms underlying increased ethanol resistance. Our results show how adaptation to high ethanol is complex and can be reached through different mutational pathways. Together, our study offers a detailed picture of how populations adapt to a complex continuous stress and identifies several mutations that increase ethanol resistance, which opens new routes to obtain superior biofuel yeast strains.
Collapse
Affiliation(s)
- Karin Voordeckers
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Jacek Kominek
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Anupam Das
- CMPG Laboratory of Predictive Genetics and Multicellular Systems, KU Leuven, Leuven, Belgium
| | - Adriana Espinosa-Cantú
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Dries De Maeyer
- CMPG Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Information Technology (INTEC, iMINDS), University of Ghent, Ghent, Belgium
| | - Ahmed Arslan
- CMPG Laboratory of Computational Systems Biology, KU Leuven, Leuven, Belgium
| | - Michiel Van Pee
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Elisa van der Zande
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Wim Meert
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Yudi Yang
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Bo Zhu
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Kathleen Marchal
- CMPG Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Information Technology (INTEC, iMINDS), University of Ghent, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, University of Ghent, Ghent, Belgium
| | - Alexander DeLuna
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Vera Van Noort
- CMPG Laboratory of Computational Systems Biology, KU Leuven, Leuven, Belgium
| | - Rob Jelier
- CMPG Laboratory of Predictive Genetics and Multicellular Systems, KU Leuven, Leuven, Belgium
| | - Kevin J. Verstrepen
- VIB Laboratory for Systems Biology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
47
|
Auxotrophic Mutations Reduce Tolerance of Saccharomyces cerevisiae to Very High Levels of Ethanol Stress. EUKARYOTIC CELL 2015; 14:884-97. [PMID: 26116212 DOI: 10.1128/ec.00053-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/22/2015] [Indexed: 12/26/2022]
Abstract
Very high ethanol tolerance is a distinctive trait of the yeast Saccharomyces cerevisiae with notable ecological and industrial importance. Although many genes have been shown to be required for moderate ethanol tolerance (i.e., 6 to 12%) in laboratory strains, little is known of the much higher ethanol tolerance (i.e., 16 to 20%) in natural and industrial strains. We have analyzed the genetic basis of very high ethanol tolerance in a Brazilian bioethanol production strain by genetic mapping with laboratory strains containing artificially inserted oligonucleotide markers. The first locus contained the ura3Δ0 mutation of the laboratory strain as the causative mutation. Analysis of other auxotrophies also revealed significant linkage for LYS2, LEU2, HIS3, and MET15. Tolerance to only very high ethanol concentrations was reduced by auxotrophies, while the effect was reversed at lower concentrations. Evaluation of other stress conditions showed that the link with auxotrophy is dependent on the type of stress and the type of auxotrophy. When the concentration of the auxotrophic nutrient is close to that limiting growth, more stress factors can inhibit growth of an auxotrophic strain. We show that very high ethanol concentrations inhibit the uptake of leucine more than that of uracil, but the 500-fold-lower uracil uptake activity may explain the strong linkage between uracil auxotrophy and ethanol sensitivity compared to leucine auxotrophy. Since very high concentrations of ethanol inhibit the uptake of auxotrophic nutrients, the active uptake of scarce nutrients may be a major limiting factor for growth under conditions of ethanol stress.
Collapse
|
48
|
Kasavi C, Eraslan S, Arga KY, Oner ET, Kirdar B. A system based network approach to ethanol tolerance in Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2014; 8:90. [PMID: 25103914 PMCID: PMC4236716 DOI: 10.1186/s12918-014-0090-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/15/2014] [Indexed: 01/23/2023]
Abstract
Background Saccharomyces cerevisiae has been widely used for bio-ethanol production and development of rational genetic engineering strategies leading both to the improvement of productivity and ethanol tolerance is very important for cost-effective bio-ethanol production. Studies on the identification of the genes that are up- or down-regulated in the presence of ethanol indicated that the genes may be involved to protect the cells against ethanol stress, but not necessarily required for ethanol tolerance. Results In the present study, a novel network based approach was developed to identify candidate genes involved in ethanol tolerance. Protein-protein interaction (PPI) network associated with ethanol tolerance (tETN) was reconstructed by integrating PPI data with Gene Ontology (GO) terms. Modular analysis of the constructed networks revealed genes with no previously reported experimental evidence related to ethanol tolerance and resulted in the identification of 17 genes with previously unknown biological functions. We have randomly selected four of these genes and deletion strains of two genes (YDR307W and YHL042W) were found to exhibit improved tolerance to ethanol when compared to wild type strain. The genome-wide transcriptomic response of yeast cells to the deletions of YDR307W and YHL042W in the absence of ethanol revealed that the deletion of YDR307W and YHL042W genes resulted in the transcriptional re-programming of the metabolism resulting from a mis-perception of the nutritional environment. Yeast cells perceived an excess amount of glucose and a deficiency of methionine or sulfur in the absence of YDR307W and YHL042W, respectively, possibly resulting from a defect in the nutritional sensing and signaling or transport mechanisms. Mutations leading to an increase in ribosome biogenesis were found to be important for the improvement of ethanol tolerance. Modulations of chronological life span were also identified to contribute to ethanol tolerance in yeast. Conclusions The system based network approach developed allows the identification of novel gene targets for improved ethanol tolerance and supports the highly complex nature of ethanol tolerance in yeast.
Collapse
Affiliation(s)
| | | | | | | | - Betul Kirdar
- Department of Chemical Engineering, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|
49
|
Miyakawa T, Mizunuma M. Physiological Roles of Calcineurin inSaccharomyces cerevisiaewith Special Emphasis on Its Roles in G2/M Cell-Cycle Regulation. Biosci Biotechnol Biochem 2014; 71:633-45. [PMID: 17341827 DOI: 10.1271/bbb.60495] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Calcineurin, a highly conserved Ca(2+)/CaM-dependent protein phosphatase, plays key regulatory roles in diverse biological processes from yeast to humans. Genetic and molecular analyses of the yeast model system have proved successful in dissecting complex regulatory pathways mediated by calcineurin. Saccharomyces cerevisiae calcineurin is not essential for growth under laboratory conditions, but becomes essential for survival under certain stress conditions, and is required for stress-induced expression of the genes for ion transporters and cell-wall synthesis. Yeast calcineurin, in collaboration with a Mpk1 MAP kinase cascade, is also important in G(2) cell-cycle regulation due to its action in a checkpoint-like mechanism. Genetic and molecular analysis of the Ca(2+)-dependent cell-cycle regulation has revealed an elaborate mechanism for the calcineurin-dependent regulation of the G(2)/M transition, in which calcineurin multilaterally activates Swe1, a negative regulator of the Cdc28/Clb complex, at the transcriptional, posttranslational, and degradation levels.
Collapse
Affiliation(s)
- Tokichi Miyakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan.
| | | |
Collapse
|
50
|
Bo T, Liu M, Zhong C, Zhang Q, Su QZ, Tan ZL, Han PP, Jia SR. Metabolomic analysis of antimicrobial mechanisms of ε-poly-L-lysine on Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4454-4465. [PMID: 24735012 DOI: 10.1021/jf500505n] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
ε-Poly-L-lysine (ε-PL), a naturally occurring amino acid homopolymer, has been widely used as a food preservative. However, its antimicrobial mechanism has not been fully understood. This study investigated the antimicrobial mode of action of ε-PL on a yeast, Saccharomyces cerevisiae. When treated with ε-PL at the concentration of 500 μg/mL, cell mortality was close to 100% and the phospholipid bilayer curvature, pores, and micelles on the surface of S. cerevisiae were clearly observed by scanning electron microscopy (SEM). At the level of 200 μg/mL, ε-PL significantly inhibited the cell growth of S. cerevisiae. When treated with 50 μg/mL ε-PL, the yeast cell was able to grow but the cell cycle was prolonged. A significant increase in cell membrane permeability was induced by ε-PL at higher concentrations. Metabolomics analysis revealed that the ε-PL stress led to the inhibition of primary metabolic pathways through the suppression of the tricarboxylic acid cycle and glycolysis. It is therefore proposed that the microbiostatic effect of ε-PL at lower levels on S. cerevisiae is achieved by inducing intracellular metabolic imbalance via disruption of cell membrane functions. Moreover, the results suggested that the antimicrobial mechanism of ε-PL on S. cerevisiae can in fact change from microbiostatic to microbicidal when the concentration of ε-PL increased, and the mechanisms of these two modes of action were completely different.
Collapse
Affiliation(s)
- Tao Bo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, and‡College of Biotechnology, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|