1
|
Morita S, Shibata TF, Nishiyama T, Kobayashi Y, Yamaguchi K, Toga K, Ohde T, Gotoh H, Kojima T, Weber JN, Salvemini M, Bino T, Mase M, Nakata M, Mori T, Mori S, Cornette R, Sakura K, Lavine LC, Emlen DJ, Niimi T, Shigenobu S. The draft genome sequence of the Japanese rhinoceros beetle Trypoxylus dichotomus septentrionalis towards an understanding of horn formation. Sci Rep 2023; 13:8735. [PMID: 37253792 DOI: 10.1038/s41598-023-35246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
The Japanese rhinoceros beetle Trypoxylus dichotomus is a giant beetle with distinctive exaggerated horns present on the head and prothoracic regions of the male. T. dichotomus has been used as a research model in various fields such as evolutionary developmental biology, ecology, ethology, biomimetics, and drug discovery. In this study, de novo assembly of 615 Mb, representing 80% of the genome estimated by flow cytometry, was obtained using the 10 × Chromium platform. The scaffold N50 length of the genome assembly was 8.02 Mb, with repetitive elements predicted to comprise 49.5% of the assembly. In total, 23,987 protein-coding genes were predicted in the genome. In addition, de novo assembly of the mitochondrial genome yielded a contig of 20,217 bp. We also analyzed the transcriptome by generating 16 RNA-seq libraries from a variety of tissues of both sexes and developmental stages, which allowed us to identify 13 co-expressed gene modules. We focused on the genes related to horn formation and obtained new insights into the evolution of the gene repertoire and sexual dimorphism as exemplified by the sex-specific splicing pattern of the doublesex gene. This genomic information will be an excellent resource for further functional and evolutionary analyses, including the evolutionary origin and genetic regulation of beetle horns and the molecular mechanisms underlying sexual dimorphism.
Collapse
Grants
- 23128505, 25128706, 16H01452, 18H04766, 20H04933, 20H05944, 17H06384, 22128008, 19K16181, 21K15135 Japan Society for the Promotion of Science
- 23128505, 25128706, 16H01452, 18H04766, 20H04933, 20H05944, 17H06384, 22128008, 19K16181, 21K15135 Japan Society for the Promotion of Science
- 23128505, 25128706, 16H01452, 18H04766, 20H04933, 20H05944, 17H06384, 22128008, 19K16181, 21K15135 Japan Society for the Promotion of Science
- 23128505, 25128706, 16H01452, 18H04766, 20H04933, 20H05944, 17H06384, 22128008, 19K16181, 21K15135 Japan Society for the Promotion of Science
- IOS-1456133 National Science Foundation
- IOS-1456133 National Science Foundation
Collapse
Affiliation(s)
- Shinichi Morita
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Tomoko F Shibata
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Tomoaki Nishiyama
- Division of Integrated Omics Research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Yuuki Kobayashi
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, Japan
| | - Katsushi Yamaguchi
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Kouhei Toga
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- URA Division, Office of Research and Academia-Government-Community Collaboration, Hiroshima University, Hiroshima, Japan
| | - Takahiro Ohde
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiroki Gotoh
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Takaaki Kojima
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Department of Agrobiological Resources, Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Jesse N Weber
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Takahiro Bino
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Mutsuki Mase
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Moe Nakata
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tomoko Mori
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Shogo Mori
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Richard Cornette
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kazuki Sakura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Laura C Lavine
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Douglas J Emlen
- Division of Biological Sciences, The University of Montana, Missoula, MT, USA
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan.
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan.
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| | - Shuji Shigenobu
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan.
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, Japan.
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan.
| |
Collapse
|
3
|
Paredes-Gamero EJ, Martins MNC, Cappabianco FAM, Ide JS, Miranda A. Characterization of dual effects induced by antimicrobial peptides: regulated cell death or membrane disruption. Biochim Biophys Acta Gen Subj 2012; 1820:1062-72. [PMID: 22425533 DOI: 10.1016/j.bbagen.2012.02.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/17/2012] [Accepted: 02/24/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Some reports describe lysis mechanisms by antimicrobial peptides (AMPs), while others describe the activation of regulated cell death. In this study, we compare the cell death-inducing activities of four β-hairpin AMPs (gomesin, protegrin, tachyplesin and polyphemusin II) along with their linear analogs in the human erythroleukemia K562 cell line to investigate the relationship between their structure and activity. METHODS K562 cells were exposed to AMPs. Morphological and biochemistry alterations were evaluated using light microscopy, confocal microscopy and flow cytometry. RESULTS Gomesin and protegrin displayed cytotoxic properties that their linear counterparts did not. Tachyplesin and polyphemusin II and also their linear analogs induced cell death. We were able to distinguish two ways in which these AMPs induced cell death. Lower concentrations of AMPs induced controlled cell death mechanisms. Gomesin, tachyplesin and linear-tachyplesin promoted apoptosis that was characterized by annexin labeling, sensitivity to Z-VAD, and caspase-3 activation, but was also inhibited by necrostatin-1. Gomesin and protegrin induced cell death was dependent on intracellular Ca2+ mechanisms and the participation of free radicals was observed in protegrin induced cell death. Polyphemusin II and its linear analog mainly induced necrosis. Conversely, treatment with higher concentrations of AMPs primarily resulted in cell membrane disruption, but with clearly different patterns of action for each AMP tested. CONCLUSION Different actions by β-hairpin AMPs were observed at low concentrations and at higher concentrations despite the structure similarity. GENERAL SIGNIFICANCE Controlled intracellular mechanism and direct membrane disruption were clearly distinguished helping to understand the real action of AMPs in mammalian cells.
Collapse
Affiliation(s)
- Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|