1
|
Zhang Y, Zhang X, Cui H, Ma X, Hu G, Wei J, He Y, Hu Y. Residue 49 of AtMinD1 Plays a Key Role in the Guidance of Chloroplast Division by Regulating the ARC6-AtMinD1 Interaction. FRONTIERS IN PLANT SCIENCE 2021; 12:752790. [PMID: 34880885 PMCID: PMC8646090 DOI: 10.3389/fpls.2021.752790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Chloroplasts evolved from a free-living cyanobacterium through endosymbiosis. Similar to bacterial cell division, chloroplasts replicate by binary fission, which is controlled by the Minicell (Min) system through confining FtsZ ring formation at the mid-chloroplast division site. MinD, one of the most important members of the Min system, regulates the placement of the division site in plants and works cooperatively with MinE, ARC3, and MCD1. The loss of MinD function results in the asymmetric division of chloroplasts. In this study, we isolated one large dumbbell-shaped and asymmetric division chloroplast Arabidopsis mutant Chloroplast Division Mutant 75 (cdm75) that contains a missense mutation, changing the arginine at residue 49 to a histidine (R49H), and this mutant point is located in the N-terminal Conserved Terrestrial Sequence (NCTS) motif of AtMinD1, which is only typically found in terrestrial plants. This study provides sufficient evidence to prove that residues 1-49 of AtMinD1 are transferred into the chloroplast, and that the R49H mutation does not affect the function of the AtMinD1 chloroplast transit peptide. Subsequently, we showed that the point mutation of R49H could remove the punctate structure caused by residues 1-62 of the AtMinD1 sequence in the chloroplast, suggesting that the arginine in residue 49 (Arg49) is essential for localizing the punctate structure of AtMinD11 - 62 on the chloroplast envelope. Unexpectedly, we found that AtMinD1 could interact directly with ARC6, and that the R49H mutation could prevent not only the previously observed interaction between AtMinD1 and MCD1 but also the interaction between AtMinD1 and ARC6. Thus, we believe that these results show that the AtMinD1 NCTS motif is required for their protein interaction. Collectively, our results show that AtMinD1 can guide the placement of the division site to the mid chloroplast through its direct interaction with ARC6 and reveal the important role of AtMinD1 in regulating the AtMinD1-ARC6 interaction.
Collapse
|
2
|
Ishikawa H, Yasuzawa M, Koike N, Sanjaya A, Moriyama S, Nishizawa A, Matsuoka K, Sasaki S, Kazama Y, Hayashi Y, Abe T, Fujiwara MT, Itoh RD. Arabidopsis PARC6 Is Critical for Plastid Morphogenesis in Pavement, Trichome, and Guard Cells in Leaf Epidermis. FRONTIERS IN PLANT SCIENCE 2019; 10:1665. [PMID: 32010156 PMCID: PMC6974557 DOI: 10.3389/fpls.2019.01665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/26/2019] [Indexed: 05/20/2023]
Abstract
Recently, a recessive Arabidopsis thaliana mutant with abundant stromules in leaf epidermal pavement cells was visually screened and isolated. The gene responsible for this mutant phenotype was identified as PARC6, a chloroplast division site regulator gene. The mutant allele parc6-5 carried two point mutations (G62R and W700stop) at the N- and C-terminal ends of the coding sequence, respectively. Here, we further characterized parc6-5 and other parc6 mutant alleles, and showed that PARC6 plays a critical role in plastid morphogenesis in all cell types of the leaf epidermis: pavement cells, trichome cells, and guard cells. Transient expression of PARC6 transit peptide (TP) fused to the green fluorescent protein (GFP) in plant cells showed that the G62R mutation has no or little effect on the TP activity of the PARC6 N-terminal region. Then, plastid morphology was microscopically analyzed in the leaf epidermis of wild-type (WT) and parc6 mutants (parc6-1, parc6-3, parc6-4 and parc6-5) with the aid of stroma-targeted fluorescent proteins. In parc6 pavement cells, plastids often assumed aberrant grape-like morphology, similar to those in severe plastid division mutants, atminE1, and arc6. In parc6 trichome cells, plastids exhibited extreme grape-like aggregations, without the production of giant plastids (>6 µm diameter), as a general phenotype. In parc6 guard cells, plastids exhibited a variety of abnormal phenotypes, including reduced number, enlarged size, and activated stromules, similar to those in atminE1 and arc6 guard cells. Nevertheless, unlike atminE1 and arc6, parc6 exhibited a low number of mini-chloroplasts (< 2 µm diameter) and rarely produced chloroplast-deficient guard cells. Importantly, unlike parc6, the chloroplast division site mutant arc11 exhibited WT-like plastid phenotypes in trichome and guard cells. Finally, observation of parc6 complementation lines expressing a functional PARC6-GFP protein indicated that PARC6-GFP formed a ring-like structure in both constricting and non-constricting chloroplasts, and that PARC6 dynamically changes its configuration during the process of chloroplast division.
Collapse
Affiliation(s)
- Hiroki Ishikawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Mana Yasuzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Nana Koike
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Alvin Sanjaya
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Shota Moriyama
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Aya Nishizawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Kanae Matsuoka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Shun Sasaki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Yusuke Kazama
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Yoriko Hayashi
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Tomoko Abe
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Makoto T. Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Ryuuichi D. Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
- *Correspondence: Ryuuichi D. Itoh,
| |
Collapse
|
3
|
Yun MS, Kawagoe Y. Septum formation in amyloplasts produces compound granules in the rice endosperm and is regulated by plastid division proteins. PLANT & CELL PHYSIOLOGY 2010; 51:1469-79. [PMID: 20685968 DOI: 10.1093/pcp/pcq116] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Storage tissues such as seed endosperm and tubers store starch in the form of granules in the amyloplast. In the rice (Oryza sativa) endosperm, each amyloplast produces compound granules consisting of several dozen polyhedral, sharp-edged and easily separable granules; whereas in other cereals, including wheat (Triticum aestivum), barley (Hordeum vulgare) and maize (Zea mays), each amyloplast synthesizes one granule. Despite extensive studies on mutants of starch synthesis in cereals, the molecular mechanisms involved in compound granule synthesis in rice have remained elusive. In this study, we expressed green fluorescent protein (GFP) fused to rice Brittle1 (BT1), an inner envelope membrane protein, to characterize dividing amyloplasts in the rice endosperm. Confocal microscopic analyses revealed that a septum-like structure, or cross-wall, containing BT1-GFP divides granules in the amyloplast. Plastid division proteins including FtsZ, Min and PDV2 play significant roles not only in amyloplast division, but also in septum synthesis, suggesting that amyloplast division and septum synthesis are related processes that share common factors. We propose that successive septum syntheses which create sections inside the amyloplast and de novo granule synthesis in each section are primarily responsible for the synthesis of compound granules.
Collapse
Affiliation(s)
- Min-Soo Yun
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | | |
Collapse
|
4
|
Fujiwara MT, Hashimoto H, Kazama Y, Hirano T, Yoshioka Y, Aoki S, Sato N, Itoh RD, Abe T. Dynamic morphologies of pollen plastids visualised by vegetative-specific FtsZ1-GFP in Arabidopsis thaliana. PROTOPLASMA 2010; 242:19-33. [PMID: 20195657 DOI: 10.1007/s00709-010-0119-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 02/05/2010] [Indexed: 05/22/2023]
Abstract
The behaviour and multiplication of pollen plastids have remained elusive despite their crucial involvement in cytoplasmic inheritance. Here, we present live images of plastids in pollen grains and growing tubes from transgenic Arabidopsis thaliana lines expressing stroma-localised FtsZ1-green-fluorescent protein fusion in a vegetative cell-specific manner. Vegetative cells in mature pollen contained a morphologically heterogeneous population of round to ellipsoidal plastids, whilst those in late-developing (maturing) pollen included plastids that could have one or two constriction sites. Furthermore, plastids in pollen tubes exhibited remarkable tubulation, stromule (stroma-filled tubule) extension, and back-and-forth movement along the direction of tube growth. Plastid division, which involves the FtsZ1 ring, was rarely observed in mature pollen grains.
Collapse
|