Maruska KP, Sohn YC, Fernald RD. Mechanistic target of rapamycin (mTOR) implicated in plasticity of the reproductive axis during social status transitions.
Gen Comp Endocrinol 2019;
282:113209. [PMID:
31226256 PMCID:
PMC6718321 DOI:
10.1016/j.ygcen.2019.113209]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/13/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/04/2023]
Abstract
The highly conserved brain-pituitary-gonadal (BPG) axis controls reproduction in all vertebrates, so analyzing the regulation of this signaling cascade is important for understanding reproductive competence. The protein kinase mechanistic target of rapamycin (mTOR) functions as a conserved regulator of cellular growth and metabolism in all eukaryotes, and also regulates the reproductive axis in mammals. However, whether mTOR might also regulate the BPG axis in non-mammalian vertebrates remains unexplored. We used complementary experimental approaches in an African cichlid fish, Astatotilapia burtoni, to demonstrate that mTOR is involved in regulation of the brain, pituitary, and testes when males rise in rank to social dominance. mTOR or downstream components of its signaling pathway (p-p70S6K) were detected in gonadotropin-releasing hormone (GnRH1) neurons, the pituitary, and testes. Transcript levels of mtor in the pituitary and testes also varied when reproductively-suppressed subordinate males rose in social rank to become dominant reproductively-active males, a transition similar to puberty in mammals. Intracerebroventricular injection of the mTORC1 inhibitor, rapamycin, revealed a role for mTOR in the socially-induced hypertrophy of GnRH1 neurons. Rapamycin treatment also had effects at the pituitary and testes, suggesting involvement of the mTORC1 complex at multiple levels of the reproductive axis. Thus, we show that mTOR regulation of BPG function is conserved to fishes, likely playing important roles in regulating reproduction and fertility across all male vertebrates.
Collapse