Melley DD, Finney SJ, Elia A, Lagan AL, Quinlan GJ, Evans TW. Arterial carboxyhemoglobin level and outcome in critically ill patients.
Crit Care Med 2007;
35:1882-7. [PMID:
17568332 DOI:
10.1097/01.ccm.0000275268.94404.43]
[Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE
Arterial carboxyhemoglobin is elevated in patients with critical illness. It is an indicator of the endogenous production of carbon monoxide by the enzyme heme oxygenase, which modulates the response to oxidant stress. The objective was to explore the hypothesis that arterial carboxyhemoglobin level is associated with inflammation and survival in patients requiring cardiothoracic intensive care.
DESIGN
Prospective, observational study.
SETTING
A cardiothoracic intensive care unit.
PATIENTS
All patients admitted over a 15-month period.
INTERVENTIONS
None.
MEASUREMENTS AND MAIN RESULTS
Arterial carboxyhemoglobin, bilirubin, and standard biochemical, hematologic, and physiologic markers of inflammation were measured in 1,267 patients. Associations were sought between levels of arterial carboxyhemoglobin, markers of the inflammatory response, and clinical outcome. Intensive care unit mortality was associated with lower minimum and greater maximal carboxyhemoglobin levels (p < .0001 and p < .001, respectively). After adjustment for age, gender, illness severity, and other relevant variables, a lower minimum arterial carboxyhemoglobin was associated with an increased risk of death from all causes (odds risk of death, 0.391; 95% confidence interval, 0.190-0.807; p = .011). Arterial carboxyhemoglobin correlated with markers of the inflammatory response.
CONCLUSIONS
Both low minimum and high maximum levels of arterial carboxyhemoglobin were associated with increased intensive care mortality. Although the heme oxygenase system is protective, excessive induction may be deleterious. This suggests that there may be an optimal range for heme oxygenase-1 induction.
Collapse