Behbahani S, Ramezani A, Karimi Moridani M, Sabbaghi H. Time-Frequency Analysis of Photopic Negative Response in CRVO Patients.
Semin Ophthalmol 2020;
35:187-193. [PMID:
32586181 DOI:
10.1080/08820538.2020.1781905]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE
The PhNR is driven by retinal ganglion cells (RGCs). Therefore, the function of RGCs could be objectively evaluated by analyzing the PhNR. The aim of this article is to determine the effect of central retinal vein occlusion (CRVO) on PhNR and RGCs performances.
METHODS
Seventeen patients with CRVO were included. Full-field photopic ERGs, including PhNR, were recorded and compared with the fellow normal eyes. ERG signals were analyzed based on the standard time-domain analyses of the PhNR as well as a continuous wavelet transform (CWT) to extract time-frequency components that correspond to the PhNR using MATLAB. We obtained the main frequencies and their occurrence time from CWT.
RESULTS
All a-wave, b-wave, and PhNR amplitudes of CRVO eyes showed a significant reduction compared to those of the fellow eyes (P < .01, P < .001, and P < .001, respectively). The peak times of a-wave, b-wave, and PhNR were increased significantly in the CRVO eyes (P = .04, P = .04, and P = .003, respectively). The dominant f3 frequency, which corresponds to the PhNR in CRVO patients, showed a more significant decrease (P < .001) compared to other dominant frequencies (f0, f1, and f2). The occurrence time of f3 (t3) was significantly higher in the CRVO eyes (P < .001). Time-domain of the PhNR was also affected in CRVO patients (P < .001).
CONCLUSION
CWT allows quantifications of ERG responses, especially for PhNR. The PhNR was severely affected in CRVO eyes implicating loss of RGCs. CWT might demonstrate the severity of CRVO more precisely and identify diagnostically significant changes of ERG waveforms that are not resolved when the analysis is only limited to the time-domain measurements.
Collapse