1
|
Khine AA, Chen PC, Chen YH, Chu SC, Huang HS, Chu TY. Epidermal growth factor receptor ligands enriched in follicular fluid exosomes promote oncogenesis of fallopian tube epithelial cells. Cancer Cell Int 2024; 24:424. [PMID: 39709453 DOI: 10.1186/s12935-024-03614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Incessant ovulation is the main etiologic factor of ovarian high-grade serous carcinomas (HGSC), which mostly originate from the fallopian tube epithelium (FTE). Receptor tyrosine kinase (RTK) ligands essential for follicle development and ovulation wound repair were abundant in the follicular fluid (FF) and promoted the transformation of FTE cells. This study determined whether RTK ligands are present in FF exosomes and whether epidermal growth factor receptor (EGFR) signaling is essential for oncogenic activity. METHODS The FF of women undergoing in vitro fertilization was fractionated based on the richness of exosomes and tested for transformation toward FTE cells under different RTK inhibitors. EGFR ligands in FF exosomes were identified, and downstream signaling proteins in FTE cells were characterized. RESULTS The transforming activity of FF was almost exclusively enriched in exosomes, which possess a high capacity to induce anchorage-independent growth, clonogenicity, migration, invasion, and proliferation of FTE cells. EGFR inhibition abolished most of these activities. FF and FF exosome exposure markedly increased EGFR phosphorylation and the downstream signal proteins, including AKT, MAPK, and FAK. Multiple EGF family growth factors, such as amphiregulin, epiregulin, betacellulin, and transforming growth factor-alpha, were identified in FF exosomes. CONCLUSIONS Our results demonstrate that FF exosomes serve as carriers of EGFR ligands as well as ligands of other RTKs that mediate the transformation of FTE cells and underscore the need to further explore the content and roles of FF exosomes in HGSC development.
Collapse
Affiliation(s)
- Aye Aye Khine
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien, 970, Taiwan, ROC
| | - Pao-Chu Chen
- Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan, ROC
| | - Ying-Hsi Chen
- Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan, ROC
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Hualien, 970, Taiwan, ROC
- School of Medicine, College of Medicine, Hualien, 970, Taiwan, ROC
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien, 970, Taiwan, ROC.
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien, 970, Taiwan, ROC.
- Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan, ROC.
- School of Medicine, College of Medicine, Hualien, 970, Taiwan, ROC.
- Institute of Medical Science, Tzu Chi University, Hualien, 970, Taiwan, ROC.
| |
Collapse
|
2
|
Youssef A, Haskali MB, Gorringe KL. The Protein Landscape of Mucinous Ovarian Cancer: Towards a Theranostic. Cancers (Basel) 2021; 13:5596. [PMID: 34830751 PMCID: PMC8616050 DOI: 10.3390/cancers13225596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/20/2023] Open
Abstract
MOC is a rare histotype of epithelial ovarian cancer, and current management options are inadequate for the treatment of late stage or recurrent disease. A shift towards personalised medicines in ovarian cancer is being observed, with trials targeting specific molecular pathways, however, MOC lags due to its rarity. Theranostics is a rapidly evolving category of personalised medicine, encompassing both a diagnostic and therapeutic approach by recognising targets that are expressed highly in tumour tissue in order to deliver a therapeutic payload. The present review evaluates the protein landscape of MOC in recent immunohistochemical- and proteomic-based research, aiming to identify potential candidates for theranostic application. Fourteen proteins were selected based on cell membrane localisation: HER2, EGFR, FOLR1, RAC1, GPR158, CEACAM6, MUC16, PD-L1, NHE1, CEACAM5, MUC1, ACE2, GP2, and PTPRH. Optimal proteins to target using theranostic agents must exhibit high membrane expression on cancerous tissue with low expression on healthy tissue to afford improved disease outcomes with minimal off-target effects and toxicities. We provide guidelines to consider in the selection of a theranostic target for MOC and suggest future directions in evaluating the results of this review.
Collapse
Affiliation(s)
- Arkan Youssef
- Department of Medicine, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Mohammad B. Haskali
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Kylie L. Gorringe
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| |
Collapse
|
3
|
Liu G, Ruan G, Huang M, Chen L, Sun P. Genome-wide DNA copy number profiling and bioinformatics analysis of ovarian cancer reveals key genes and pathways associated with distinct invasive/migratory capabilities. Aging (Albany NY) 2020; 12:178-192. [PMID: 31895688 PMCID: PMC6977652 DOI: 10.18632/aging.102608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Ovarian cancer (OC) metastasis presents major hurdles that must be overcome to improve patient outcomes. Recent studies have demonstrated copy number variations (CNVs) frequently contribute to alterations in oncogenic drivers. The present study used a CytoScan HD Array to analyse CNVs and loss of heterozygosity (LOH) in the entire genomes of 6 OC patients and human OC cell lines to determine the genetic target events leading to the distinct invasive/migratory capacities of OC. The results showed that LOH at Xq11.1 and Xp21.1 and gains at 8q21.13 were novel, specific CNVs. Ovarian cancer-related CNVs were then screened by bioinformatics analysis. In addition, transcription factors-target gene interactions were predicted with information from PASTAA analysis. As a result, six genes (i.e., GAB2, AKT1, EGFR, COL6A3, UGT1A1 and UGT1A8) were identified as strong candidates by integrating the above data with gene expression and clinical outcome data. In the transcriptional regulatory network, 4 known cancer-related transcription factors (TFs) interacted with 6 CNV-driven genes. The protein/DNA arrays revealed 3 of these 4 TFs as potential candidate gene-related transcription factors in OC. We then demonstrated that these six genes can serve as potential biomarkers for OC. Further studies are required to elucidate the pathogenesis of OC.
Collapse
Affiliation(s)
- GuiFen Liu
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - GuanYu Ruan
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - MeiMei Huang
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - LiLi Chen
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - PengMing Sun
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China.,Department of Gynaecology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
4
|
Xia W, Wang L, Yu D, Mu X, Zhou X. Lidocaine inhibits the progression of retinoblastoma in vitro and in vivo by modulating the miR‑520a‑3p/EGFR axis. Mol Med Rep 2019; 20:1333-1342. [PMID: 31173241 PMCID: PMC6625385 DOI: 10.3892/mmr.2019.10363] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
Retinoblastoma (RB) is a common malignant tumor in children. Lidocaine is a local anesthetic and anti-arrhythmic drug, and has been reported to possess anti-tumor properties. MicroRNAs (miRs) are a group of endogenous small noncoding RNAs that have important roles in various biological processes via actions on target genes. The aim of the present study was to investigate the effect of lidocaine on retinoblastoma in vitro and in vivo. CCK-8 assay and flow cytometry assay were used to measure cell viability and apoptosis. The relationship between miR-520a-3p and EGFR was predicted and confirmed by TargetScan and dual-luciferase reporter assay. For in vivo study, tumor xenograft was performed. In addition, gene and protein expression was detected using reverse transcription-quantitative polymerase chain reaction and western blotting respectively. In the present study, it was observed that lidocaine inhibited the proliferation and induced the apoptosis of RB cells. miR-520a-3p was reported to be downregulated in RB tissues and cell lines; treatment with lidocaine increased the expression of miR-520a-3p in RB cells. The human epidermal growth factor receptor (EGFR) was identified as a direct target of miR-520a-3p, and its expression was negatively associated with that of miR-520a-3p. Additionally, EGFR was upregulated in RB tissues and cell lines; treatment with lidocaine decreased the expression of EGFR in RB cells. Furthermore, compared with treatment with lidocaine alone, the combination of transfection with miR-520a-3p inhibitor and lidocaine treatment significantly decreased the expression of miR-520a-3p, increased EGFR expression, promoted RB cell proliferation and reduced the apoptosis of cells in vitro, and increased tumor volume and weight in vivo. The results indicated that lidocaine reduced the proliferation and induced the apoptosis of RB cells by decreasing EGFR expression via the upregulation of miR-520a-3p, suggesting that the miR-520a-3p/EGFR axis may be a novel therapeutic target in the treatment of RB.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Ophthalmology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Libo Wang
- Department of Ophthalmology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Dongyi Yu
- Department of Ophthalmology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Xing Mu
- Department of Ophthalmology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Xin Zhou
- Department of Ophthalmology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| |
Collapse
|