1
|
Mu Y, Lian C, Chen X, Yang X, Li D, Zhang Y. Cutaneous squamous cell carcinoma-derived exosomal MicroRNA-31 acts as an oncogene by targeting the tumor suppressor RhoBTB1. Arch Dermatol Res 2024; 317:114. [PMID: 39673615 DOI: 10.1007/s00403-024-03558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 09/29/2024] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Tumor-derived exosomes that transport MicroRNAs significantly influence cutaneous squamous cell carcinoma(CSCC) progression. However, the molecular mechanisms of exosomal MicroRNA-31 regulation of CSCC are mostly undefined. To determine whether a targeting relationship exists between MicroRNA-31 (miR-31) in CSCC-derived exosomes and the tumor suppressor RhoBTB1, and the regulatory effect of the relationship on tumor cells. Immunoblotting and quantitative PCR were used to measure miR-31 and RhoBTB1 levels in various cells and exosomes. Differential ultracentrifugation was used to isolate exosomes. MTT and Transwell assays were used to assess cell proliferation, migration, and invasion. Dual luciferase reporter assays were used to assess the direct interaction between miR-31 and the tumor suppressor RhoBTB1 in cutaneous squamous cell carcinoma (CSCC)-derived exosomes. Compared with a human skin keratinocyte cell line, in CSCC cell lines RhoBTB1 was downregulated and miR-31 levels were elevated. Exosomal miR-31 from CSCC cell lines directly targeted RhoBTB1 by binding to the 3' UTR of RhoBTB1. This interaction suppressed expression of RhoBTB1 and enhanced CSCC cell proliferation, migration, and invasion. MicroRNA-31 in CSCC-derived exosomes can enhance CSCC cell proliferation, migration, and invasion by suppressing expression of RhoBTB1. This finding explains, in part, the molecular mechanism of CSCC. Investigative approaches focused on suppressing miR-31 or enhancing RhoBTB1 signaling pathways are promising avenues for developing targeted therapies for CSCC.
Collapse
Affiliation(s)
- Yanan Mu
- Department of Dermatology, The Affiliated Hospital of Inner Mongolia Medical University, Xinhua Street, Hohhot, 010030, China
| | - Chen Lian
- Department of Dermatology, The Affiliated Hospital of Inner Mongolia Medical University, Xinhua Street, Hohhot, 010030, China
| | - Xinghui Chen
- Department of Dermatology, The Affiliated Hospital of Inner Mongolia Medical University, Xinhua Street, Hohhot, 010030, China
| | - Xueying Yang
- Department of Dermatology, The Affiliated Hospital of Inner Mongolia Medical University, Xinhua Street, Hohhot, 010030, China
| | - Dongxia Li
- Department of Dermatology, The Affiliated Hospital of Inner Mongolia Medical University, Xinhua Street, Hohhot, 010030, China.
| | - Yi Zhang
- Department of Dermatology, The Affiliated Hospital of Inner Mongolia Medical University, Xinhua Street, Hohhot, 010030, China.
| |
Collapse
|
2
|
Enache A, Sajjad B, Altintas B, Giri N, McReynolds LJ, Cowen EW. Benign tumors and non-melanoma skin cancers in patients with Fanconi anemia. Fam Cancer 2024; 23:583-590. [PMID: 38907138 PMCID: PMC11512875 DOI: 10.1007/s10689-024-00410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Fanconi anemia (FA) is an inherited bone marrow failure syndrome (IBMFS) characterized by pathogenic variants in the FA/BRCA DNA repair pathway genes. Individuals with FA have an elevated risk of developing myelodysplastic syndrome, acute myeloid leukemia, and solid tumors. Hematopoietic cell transplantation (HCT) is the most effective treatment for FA related bone marrow failure but can increase the risk of cancer development. Information on benign tumors and NMSC is lacking in patients with FA. Our objective was to characterize patients with FA enrolled in the National Cancer Institute IBMFS Study who have experienced non-melanoma skin cancers (NMSC) and/or benign tumors (BT). A total of 200 patients diagnosed with FA were enrolled in the Institutional Review Board approved study "Etiologic Investigation of Cancer Susceptibility in IBMFS: A Natural History Study" (NCT00027274). Through medical records review, we identified 30 patients with at least one NMSC, either squamous or basal cell carcinoma, or benign tumor. The remaining 170 patients comprised the control group. Out of 200 patients, 12 had NMSC, 25 had benign tumors, with an age range of 11-64 and 0-56 years, respectively. The median age at HCT was 30.5 years for NMSC patients, 9 years for benign tumor patients, and 9.1 years for controls. The most common genotype observed was FANCA, followed by FANCC and FANCI. Benign tumors spanned diverse anatomical locations. Early onset NMSC in patients with FA compared to the general population emphasizes the need for consistent monitoring in patients with FA, while the diverse anatomical locations of benign tumors underscore the importance of comprehensive surveillance for timely interventions in managing symptomatology and heightened cancer risk.
Collapse
Affiliation(s)
- Aura Enache
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, 9609 Medical Center Drive 6E434, Bethesda, MD, 20892, USA
| | - Bia Sajjad
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, 9609 Medical Center Drive 6E434, Bethesda, MD, 20892, USA
| | - Burak Altintas
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, 9609 Medical Center Drive 6E434, Bethesda, MD, 20892, USA
| | - Neelam Giri
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, 9609 Medical Center Drive 6E434, Bethesda, MD, 20892, USA
| | - Lisa J McReynolds
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, 9609 Medical Center Drive 6E434, Bethesda, MD, 20892, USA.
| | - Edward W Cowen
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, 9609 Medical Center Drive 6E434, Bethesda, MD, 20892, USA
| |
Collapse
|
3
|
Agha R, Heysek RV, Vasily DB, Rowe R, McClure EM, O’Reilly K, Finkelstein SE, Farberg AS. Image-Guided Superficial Radiation Therapy for Basal and Squamous Cell Carcinomas Produces Excellent Freedom from Recurrence Independent of Risk Factors. J Clin Med 2024; 13:5835. [PMID: 39407895 PMCID: PMC11477103 DOI: 10.3390/jcm13195835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Basal cell carcinomas (BCCs) and squamous cell carcinomas (SCCs) are non-melanoma skin cancers (NMSCs) and the most prevalent cancers in the United States. Image-guided superficial radiotherapy (IGSRT) is a relatively new treatment option that uses high-resolution dermal ultrasound integrated with superficial radiotherapy to improve tumor visualization. IGSRT is a clinically equivalent non-surgical alternative to Mohs micrographic surgery at 2 years of follow-up in early-stage NMSC, but larger cohort studies with longer follow-up periods that allow for analysis of patient outcomes by demographic and disease characteristics are needed. Methods: This large, retrospective cohort study was conducted to determine the effect of risk factors (tumor location, tumor stage, and sex) on 2-, 4-, and 6-year freedom from recurrence rates in 19,988 NMSC lesions treated with IGSRT, including lesions with complete treatment courses. Results: Overall freedom from recurrence rates were 99.68% at 2 years, 99.54% at 4 years, and 99.54% at 6 years; rates did not differ significantly by tumor location (head/neck versus other locations, p = 0.9) or sex (male versus female, p = 0.4). In contrast, there was a significant difference in freedom from recurrence rates when analyzed by tumor stage (p = 0.004). Conclusions: There was no significant effect of tumor location or sex on freedom from recurrence in IGSRT-treated NMSC. Although there was a significant difference according to tumor stage, freedom from recurrence rates exceeded 99% at all stages.
Collapse
Affiliation(s)
- Rania Agha
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | | | - David B. Vasily
- Lehigh Valley Dermatology Associates, Ltd., Bethlehem, PA 18018, USA;
| | | | - Erin M. McClure
- University Hospitals Geauga Medical Center, Chardon, OH 44024, USA
| | | | - Steven Eric Finkelstein
- Center of Advanced Radiation Excellence (CARE) and Radiation Oncology Research, Associated Medical Professionals of NY, Syracuse, NY 13210, USA;
| | - Aaron S. Farberg
- Bare Dermatology, Dallas, TX 75235, USA
- University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
4
|
Kurtansky NR, D'Alessandro BM, Gillis MC, Betz-Stablein B, Cerminara SE, Garcia R, Girundi MA, Goessinger EV, Gottfrois P, Guitera P, Halpern AC, Jakrot V, Kittler H, Kose K, Liopyris K, Malvehy J, Mar VJ, Martin LK, Mathew T, Maul LV, Mothershaw A, Mueller AM, Mueller C, Navarini AA, Rajeswaran T, Rajeswaran V, Saha A, Sashindranath M, Serra-García L, Soyer HP, Theocharis G, Vos A, Weber J, Rotemberg V. The SLICE-3D dataset: 400,000 skin lesion image crops extracted from 3D TBP for skin cancer detection. Sci Data 2024; 11:884. [PMID: 39143096 PMCID: PMC11324883 DOI: 10.1038/s41597-024-03743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
AI image classification algorithms have shown promising results when applied to skin cancer detection. Most public skin cancer image datasets are comprised of dermoscopic photos and are limited by selection bias, lack of standardization, and lend themselves to development of algorithms that can only be used by skilled clinicians. The SLICE-3D ("Skin Lesion Image Crops Extracted from 3D TBP") dataset described here addresses those concerns and contains images of over 400,000 distinct skin lesions from seven dermatologic centers from around the world. De-identified images were systematically extracted from sensitive 3D Total Body Photographs and are comparable in optical resolution to smartphone images. Algorithms trained on lower quality images could improve clinical workflows and detect skin cancers earlier if deployed in primary care or non-clinical settings, where photos are captured by non-expert physicians or patients. Such a tool could prompt individuals to visit a specialized dermatologist. This dataset circumvents many inherent limitations of prior datasets and may be used to build upon previous applications of skin imaging for cancer detection.
Collapse
Affiliation(s)
- Nicholas R Kurtansky
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| | | | - Maura C Gillis
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Brigid Betz-Stablein
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - Sara E Cerminara
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland
| | - Rafael Garcia
- Computer Vision and Robotics Institute, University of Girona, Girona, Spain
| | | | | | - Philippe Gottfrois
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland
| | - Pascale Guitera
- Melanoma Institute Australia, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Allan C Halpern
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Harald Kittler
- ViDIR Group, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Kivanc Kose
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Josep Malvehy
- Dermatology Department, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER ER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Victoria J Mar
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Victorian Melanoma Service, Alfred Hospital, 55 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Linda K Martin
- Melanoma Institute Australia, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, Australia
| | | | - Lara Valeska Maul
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - Adam Mothershaw
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - Alina M Mueller
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland
| | - Christoph Mueller
- ViDIR Group, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Anup Saha
- Computer Vision and Robotics Institute, University of Girona, Girona, Spain
| | - Maithili Sashindranath
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | | | - H Peter Soyer
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | | | - Ayesha Vos
- Victorian Melanoma Service, Alfred Hospital, 55 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Jochen Weber
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Veronica Rotemberg
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
5
|
Mukarram M, Khachemoune A. Upper and Lower Eyelid Malignancies: Differences in Clinical Presentation, Metastasis, and Treatment. Arch Dermatol Res 2024; 316:429. [PMID: 38907769 DOI: 10.1007/s00403-024-03163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 06/24/2024]
Abstract
Approximately 5-15% of all dermatologic malignancies manifest in the upper and lower eyelids. The primary types include basal cell carcinoma, squamous cell carcinoma, and sebaceous cell carcinoma, with Merkel cell carcinoma and melanoma following closely behind. Basal cell carcinoma predominantly affects the lower eyelid, yet various other carcinomas, melanomas, metastases, and neoplasms of diverse origins can arise on both upper and lower eyelids. Risk factors such as advanced age, smoking, and notably, exposure to UV light significantly contribute to the development of these eyelid lesions. Despite the increasing incidence, research on dermatologic eyelid malignancies remains limited. However, such study is imperative given that many systemic oncologic malignancies initially present as metastatic eyelid lesions. This paper provides an in-depth exploration of eyelid anatomy, clinical presentation, diagnosis, and treatment management.Key Points: Eyelid metastases represent less than one percent of all eyelid cancers, yet they often serve as the initial indication of an underlying systemic malignancy. Early detection and treatment is crucial in improving prognosis and quality of life for patients. Treatment options encompass a range of modalities, with Mohs surgery as the gold standard for the removal of ocular tumors. Additional treatment options include local excision as well as non-surgical interventions such as radiotherapy, cryotherapy, immunotherapy, and topical medications.
Collapse
MESH Headings
- Humans
- Eyelid Neoplasms/therapy
- Eyelid Neoplasms/diagnosis
- Eyelid Neoplasms/epidemiology
- Eyelid Neoplasms/pathology
- Eyelids/pathology
- Mohs Surgery
- Skin Neoplasms/therapy
- Skin Neoplasms/diagnosis
- Skin Neoplasms/pathology
- Skin Neoplasms/epidemiology
- Melanoma/therapy
- Melanoma/diagnosis
- Melanoma/pathology
- Melanoma/epidemiology
- Carcinoma, Merkel Cell/therapy
- Carcinoma, Merkel Cell/diagnosis
- Carcinoma, Merkel Cell/epidemiology
- Carcinoma, Merkel Cell/secondary
- Carcinoma, Merkel Cell/pathology
- Risk Factors
- Carcinoma, Basal Cell/therapy
- Carcinoma, Basal Cell/diagnosis
- Carcinoma, Basal Cell/epidemiology
- Carcinoma, Basal Cell/pathology
- Carcinoma, Basal Cell/secondary
- Quality of Life
- Carcinoma, Squamous Cell/therapy
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/secondary
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/epidemiology
- Sebaceous Gland Neoplasms/therapy
- Sebaceous Gland Neoplasms/diagnosis
- Sebaceous Gland Neoplasms/pathology
Collapse
Affiliation(s)
- M Mukarram
- Arizona College of Osteopathic Medicine, Midwestern University Glendale, Arizona, USA
| | - A Khachemoune
- Department of Dermatology, University of New York Downstate and Veterans Affairs Medical Center, 800 Poly Pl, Brooklyn, NY, 11209, USA.
| |
Collapse
|
6
|
Gandarillas S, Tang H, Dasgeb B. Case Report: Dostarlimab for treatment of aggressive cutaneous squamous cell carcinoma. Front Med (Lausanne) 2024; 11:1322210. [PMID: 38529116 PMCID: PMC10962323 DOI: 10.3389/fmed.2024.1322210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common malignancy with the aggressive cSCC subtype being especially worrisome due to its higher metastatic and mortality rate. An 80-year-old immunocompetent Caucasian man presented with a locally advanced and recurrent cSCC for which he underwent six Mohs surgeries, radiation therapy, and standard immunotherapy treatments. Throughout treatment, the patient's cancer continued to progress across different regions of the face. Biopsy and analysis were performed and showed that the cSCCs had a high mutational burden and oncogenes known to be present in tumors with aggressive nature. After the algorithmically applied standard of care failed to cure or control the progressing disease, the genetic analysis favored dostarlimab as a suitable option. With only three doses of 500 mg dostarlimab q3 weeks, the patient showed a fast response with macroscopic resolution of clinically discernible disease of, the previously noted, locally advanced cSCC on his right forehead, as well as other primary keratinocyte carcinomas on his left contralateral face, nose, left leg, and neck. This remarkable case can present an option for complex patients with locally advanced and recurrent cSCC who failed the current standard of care. Moreover, it warrants a proper clinical trial to assess efficacy and potential indication of dostarlimab in such patients. Of note is the presence of a KMT2D mutation and its well-identified correlation with mismatch repair deficiency (dMMR) and poor prognosis, which can play an informative role in clinical decision making and precision therapeutic choice at the point of care.
Collapse
Affiliation(s)
- Sophia Gandarillas
- Department of Dermatology, Wayne State University, Detroit, MI, United States
| | - Horace Tang
- Department of Hematology, Community Medical Center, Toms River, NJ, United States
| | - Bahar Dasgeb
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
7
|
Myslicka M, Kawala-Sterniuk A, Bryniarska A, Sudol A, Podpora M, Gasz R, Martinek R, Kahankova Vilimkova R, Vilimek D, Pelc M, Mikolajewski D. Review of the application of the most current sophisticated image processing methods for the skin cancer diagnostics purposes. Arch Dermatol Res 2024; 316:99. [PMID: 38446274 DOI: 10.1007/s00403-024-02828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/28/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
This paper presents the most current and innovative solutions applying modern digital image processing methods for the purpose of skin cancer diagnostics. Skin cancer is one of the most common types of cancers. It is said that in the USA only, one in five people will develop skin cancer and this trend is constantly increasing. Implementation of new, non-invasive methods plays a crucial role in both identification and prevention of skin cancer occurrence. Early diagnosis and treatment are needed in order to decrease the number of deaths due to this disease. This paper also contains some information regarding the most common skin cancer types, mortality and epidemiological data for Poland, Europe, Canada and the USA. It also covers the most efficient and modern image recognition methods based on the artificial intelligence applied currently for diagnostics purposes. In this work, both professional, sophisticated as well as inexpensive solutions were presented. This paper is a review paper and covers the period of 2017 and 2022 when it comes to solutions and statistics. The authors decided to focus on the latest data, mostly due to the rapid technology development and increased number of new methods, which positively affects diagnosis and prognosis.
Collapse
Affiliation(s)
- Maria Myslicka
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland.
| | - Aleksandra Kawala-Sterniuk
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758, Opole, Poland.
| | - Anna Bryniarska
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758, Opole, Poland
| | - Adam Sudol
- Faculty of Natural Sciences and Technology, University of Opole, Dmowskiego 7-9, 45-368, Opole, Poland
| | - Michal Podpora
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758, Opole, Poland
| | - Rafal Gasz
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758, Opole, Poland
| | - Radek Martinek
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758, Opole, Poland
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava, 70800, Czech Republic
| | - Radana Kahankova Vilimkova
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758, Opole, Poland
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava, 70800, Czech Republic
| | - Dominik Vilimek
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava, 70800, Czech Republic
| | - Mariusz Pelc
- Institute of Computer Science, University of Opole, Oleska 48, 45-052, Opole, Poland
- School of Computing and Mathematical Sciences, University of Greenwich, Old Royal Naval College, Park Row, SE10 9LS, London, UK
| | - Dariusz Mikolajewski
- Institute of Computer Science, Kazimierz Wielki University in Bydgoszcz, ul. Kopernika 1, 85-074, Bydgoszcz, Poland
- Neuropsychological Research Unit, 2nd Clinic of the Psychiatry and Psychiatric Rehabilitation, Medical University in Lublin, Gluska 1, 20-439, Lublin, Poland
| |
Collapse
|
8
|
Liu X, van Beek N, Cepic A, Andreani NA, Chung CJ, Hermes BM, Yilmaz K, Benoit S, Drenovska K, Gerdes S, Gläser R, Goebeler M, Günther C, von Georg A, Hammers CM, Holtsche MM, Hübner F, Kiritsi D, Schauer F, Linnenmann B, Huilaja L, Tasanen-Määttä K, Vassileva S, Zillikens D, Sadik CD, Schmidt E, Ibrahim S, Baines JF. The gut microbiome in bullous pemphigoid: implications of the gut-skin axis for disease susceptibility. Front Immunol 2023; 14:1212551. [PMID: 38022583 PMCID: PMC10668026 DOI: 10.3389/fimmu.2023.1212551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease that primarily affects the elderly. An altered skin microbiota in BP was recently revealed. Accumulating evidence points toward a link between the gut microbiota and skin diseases; however, the gut microbiota composition of BP patients remains largely underexplored, with only one pilot study to date, with a very limited sample size and no functional profiling of gut microbiota. To thoroughly investigate the composition and function of the gut microbiota in BP patients, and explore possible links between skin conditions and gut microbiota, we here investigated the gut microbiota of 66 patients (81.8% firstly diagnosed) suffering from BP and 66 age-, sex-, and study center-matched controls (CL) with non-inflammatory skin diseases (132 total participants), using 16S rRNA gene and shotgun sequencing data. Decreased alpha-diversity and an overall altered gut microbial community is observed in BP patients. Similar trends are observed in subclassifications of BP patients, including first diagnoses and relapsed cases. Furthermore, we observe a set of BP disease-associated gut microbial features, including reduced Faecalibacterium prausnitzii and greater abundance of pathways related to gamma-aminobutyric acid (GABA) metabolism in BP patients. Interestingly, F. prausnitzii is a well-known microbiomarker of inflammatory diseases, which has been reported to be reduced in the gut microbiome of atopic dermatitis and psoriasis patients. Moreover, GABA plays multiple roles in maintaining skin health, including the inhibition of itching by acting as a neurotransmitter, attenuating skin lesions by balancing Th1 and Th2 levels, and maintaining skin elasticity by increasing the expression of type I collagen. These findings thus suggest that gut microbiota alterations present in BP may play a role in the disease, and certain key microbes and functions may contribute to the link between gut dysbiosis and BP disease activity. Further studies to investigate the underlying mechanisms of the gut-skin interaction are thus clearly warranted, which could aid in the development of potential therapeutic interventions.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Nina van Beek
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Aleksa Cepic
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Nadia A. Andreani
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Cecilia J. Chung
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Britt M. Hermes
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Kaan Yilmaz
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Sandrine Benoit
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Kossara Drenovska
- Department of Dermatology and Venereology, Medical University-Sofia, Sofia, Bulgaria
| | - Sascha Gerdes
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany
| | - Regine Gläser
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Günther
- Department of Dermatology, University Hospital, Technische Universität (TU) Dresden, Dresden, Germany
| | - Anabelle von Georg
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Christoph M. Hammers
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Maike M. Holtsche
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Franziska Hübner
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Franziska Schauer
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Beke Linnenmann
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Laura Huilaja
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Dermatology and Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | - Kaisa Tasanen-Määttä
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Dermatology and Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | - Snejina Vassileva
- Department of Dermatology and Venereology, Medical University-Sofia, Sofia, Bulgaria
| | - Detlef Zillikens
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| | - Christian D. Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Saleh Ibrahim
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - John F. Baines
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| |
Collapse
|
9
|
Chaturvedi D, Paranjape S, Jain R, Dandekar P. Disease-related biomarkers as experimental endpoints in 3D skin culture models. Cytotechnology 2023; 75:165-193. [PMID: 37187945 PMCID: PMC10167092 DOI: 10.1007/s10616-023-00574-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
The success of in vitro 3D models in either recapitulating the normal tissue physiology or altered physiology or disease condition depends upon the identification and/or quantification of relevant biomarkers that confirm the functionality of these models. Various skin disorders, such as psoriasis, photoaging, vitiligo, etc., and cancers like squamous cell carcinoma and melanoma, etc. have been replicated via organotypic models. The disease biomarkers expressed by such cell cultures are quantified and compared with the biomarkers expressed in cultures depicting the normal tissue physiology, to identify the most prominent variations in their expression. This may also indicate the stage or reversal of these conditions upon treatment with relevant therapeutics. This review article presents an overview of the important biomarkers that have been identified in in-vitro 3D models of skin diseases as endpoints for validating the functionality of these models. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00574-2.
Collapse
Affiliation(s)
- Deepa Chaturvedi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019 India
| | - Swarali Paranjape
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019 India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400019 India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019 India
| |
Collapse
|