1
|
Das B, Somkuwar BG, Chaudhary SK, Kharlyngdoh E, Pakyntein CL, Basor K, Shukla JK, Bhardwaj PK, Mukherjee PK. Therapeutics of bitter plants from Northeast region of India and their pharmacological and phytochemical perspectives. Pharmacol Res 2025; 212:107626. [PMID: 39875018 DOI: 10.1016/j.phrs.2025.107626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Natural resources have been used for food and medicine since the beginning of human civilization, and they have always been a low-cost, easily accessible source for individuals. Northeast region of India (NER) represents a significant portion of India's flora and fauna. Marginality, fragility, inaccessibility, ethnicity, and cultural diversity thrived in the region, resulting in the richest reservoir of genetic variation of bioresources. Several bitter plants are used by the locals as both food and medicine to treat a variety of diseases. These medicinal plants are an excellent source of chemically diverse biologically active phytometabolites. There have been few efforts to raise awareness about health benefits of bitter plant resources abound in this region that may provides opportunities for their sustainable utilization. Understanding the structural features of plant derived bitterants in relationship with specific bitter receptor will provide research prospects to identify biomolecules with health benefits. In this context the present review is intended to deliver phyto-pharmacological aspects of bitter plant resources of NER together with detailed understanding of possible association between plant derived phytometabolites as bitter agonists with extraoral bitter receptors.
Collapse
Affiliation(s)
- Bhaskar Das
- BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Department of Biotechnology, Government of India, Imphal, Manipur795001, India.
| | | | | | | | | | - Kishor Basor
- BRIC-IBSD, Meghalaya Center, Shillong, Meghalaya 793009, India.
| | | | | | - Pulok Kumar Mukherjee
- BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Department of Biotechnology, Government of India, Imphal, Manipur795001, India; BRIC-IBSD, Mizoram Center, Aizawl, Mizoram 796005, India; BRIC-IBSD, Meghalaya Center, Shillong, Meghalaya 793009, India.
| |
Collapse
|
2
|
Jaiswal V, Lee HJ. A Comprehensive Review on Graptopetalum paraguayense's Phytochemical Profiles, Pharmacological Activities, and Development as a Functional Food. PLANTS (BASEL, SWITZERLAND) 2025; 14:349. [PMID: 39942910 PMCID: PMC11820263 DOI: 10.3390/plants14030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025]
Abstract
Graptopetalum paraguayense (G. paraguayense) is a succulent plant that has been used in traditional Chinese and Taiwanese medicine, mainly for antihypertensive and hepatoprotective activities. G. paraguayense is also used as an edible vegetable, which is considered a functional food. Different in vitro, in vivo, and clinical studies have highlighted the multiple pharmacological activities of G. paraguayense, which include anticancer, antibacterial, antiviral, antiasthma, antihypertensive, skin-whitening and anti-aging, anti-Alzheimer, neuroprotective, and hepatoprotective activities. Numerous studies revealed the antioxidant and anti-inflammatory potential of G. paraguayense, which may be the major contributing factor for multiple pharmacological activities and the protective effect of G. paraguayense on pancreatic, liver, lung, colon, and brain diseases. Initial safety studies on animal models also support the therapeutic candidature of G. paraguayense. The presence of numerous bioactive phytochemicals, especially polyphenols, and the identification of important disease targets of G. paraguayense emphasize its high therapeutic potential. The lack of a directional approach and limited in vivo studies limit the development of G. paraguayense against important diseases. Still, a compilation of pharmacological activities and target pathways of G. paraguayense is missing in the literature. The current review not only compiles pharmacological activities and phytochemicals but also highlights gaps and proposes future directions for developing G. paraguayense as a candidate against important diseases.
Collapse
Affiliation(s)
- Varun Jaiswal
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
3
|
Messina M, Duncan A, Messina V, Lynch H, Kiel J, Erdman JW. The health effects of soy: A reference guide for health professionals. Front Nutr 2022; 9:970364. [PMID: 36034914 PMCID: PMC9410752 DOI: 10.3389/fnut.2022.970364] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Soy is a hotly debated and widely discussed topic in the field of nutrition. However, health practitioners may be ill-equipped to counsel clients and patients about the use of soyfoods because of the enormous, and often contradictory, amount of research that has been published over the past 30 years. As interest in plant-based diets increases, there will be increased pressure for practitioners to gain a working knowledge of this area. The purpose of this review is to provide concise literature summaries (400-500 words) along with a short perspective on the current state of knowledge of a wide range of topics related to soy, from the cholesterol-lowering effects of soy protein to the impact of isoflavones on breast cancer risk. In addition to the literature summaries, general background information on soyfoods, soy protein, and isoflavones is provided. This analysis can serve as a tool for health professionals to be used when discussing soyfoods with their clients and patients.
Collapse
Affiliation(s)
- Mark Messina
- Soy Nutrition Institute Global, Washington, DC, United States
| | - Alison Duncan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Heidi Lynch
- Kinesiology Department, Point Loma Nazarene University, San Diego, CA, United States
| | - Jessica Kiel
- Scientific and Clinical Affairs, Medifast Inc., Baltimore, MD, United States
| | - John W. Erdman
- Division of Nutritional Sciences and Beckman Institute, Department of Food Science and Human Nutrition, University of Illinois at Urbana/Champaign, Urbana, IL, United States
| |
Collapse
|
4
|
Xiong J, Tian Y, Ling A, Liu Z, Zhao L, Cheng G. Genistein affects gonadotrophin-releasing hormone secretion in GT1-7 cells via modulating kisspeptin receptor and key regulators. Syst Biol Reprod Med 2022; 68:138-150. [PMID: 34986716 DOI: 10.1080/19396368.2021.2003910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Epidemiological studies have shown that genistein, an isoflavonoid phytoestrogen from soybean, affects endocrine and reproductive systems and alters pubertal onset. Administration of genistein in mice could impact the electrophysiology of hypothalamic neurons associated with the secretion of gonadotropin-releasing hormone (GnRH), a key component of hypothalamic-pituitary-gonadal (HPG) axis that governs hormone release and reproductive maturation. However, whether genistein could directly influence GnRH secretion in GnRH-specific neurons requires further investigation. Here, mouse hypothalamic GT1-7 neurons were recruited as a GnRH-expressing model to directly evaluate the effect and mechanisms of genistein on GnRH release. Results from this study demonstrated that genistein treatment decreased cell viability, impacted cell cycle distribution, and induced apoptosis of GT1-7 cells. A high concentration of genistein (20 μM) significantly increased GnRH secretion by 122.4% compared to the control. Since GnRH release is regulated by components of the kisspeptin-neurokinin-dynorphin (KNDy) system and regulators including SIRT1, PKCγ, and MKRN3, their transcription and translation were examined. Significant increases were observed for the mRNA and protein levels of the KNDy component kisspeptin receptor (Gpr54/Kissr). Compared to the control, genistein treatment upregulated the level of Sirt1 mRNA level, while it downregulated Prkcg and Mkrn3 expression. Therefore, this study provided direct evidence that genistein treatment could affect GnRH secretion by modulating kisspeptin receptors, SIRT1, PKCγ and MKRN3 in GT1-7 cells.Abbreviations: GnRH: gonadotropin-releasing hormone; HPG: hypothalamic-pituitary-gonadal; KNDy: kisspeptin-neurokinin-dynorphin; LH: luteinizing hormone; FSH: follicle-stimulating hormone; ARC: arcuate nucleus; ER: estrogen receptor; SIRT1: silent information regulator 1; PKCγ: protein kinase c γ: MKRN3: makorin ring finger protein 3; LC: lethal concentration; PI: propidium iodide; ECL: chemiluminescence; BCA: bicinchoninic acid assay; PBS: phosphate-buffered saline; CT: fluorescence reached threshold; PVDF: polyvinylidene difluoride.
Collapse
Affiliation(s)
- Jingyuan Xiong
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ye Tian
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Aru Ling
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhenmi Liu
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Li Zhao
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Suen AA, Kenan AC, Williams CJ. Developmental exposure to phytoestrogens found in soy: New findings and clinical implications. Biochem Pharmacol 2022; 195:114848. [PMID: 34801523 PMCID: PMC8712417 DOI: 10.1016/j.bcp.2021.114848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Exposure to naturally derived estrogen receptor activators, such as the phytoestrogen genistein, can occur at physiologically relevant concentrations in the human diet. Soy-based infant formulas are of particular concern because infants consuming these products have serum genistein levels almost 20 times greater than those seen in vegetarian adults. Comparable exposures in animal studies have adverse physiologic effects. The timing of exposure is particularly concerning because infants undergo a steroid hormone-sensitive period termed "minipuberty" during which estrogenic chemical exposure may alter normal reproductive tissue patterning and function. The delay between genistein exposure and reproductive outcomes poses a unique challenge to collecting epidemiological data. In 2010, the U.S. National Toxicology Program monograph on the safety of the use of soy formula stated that the use of soy-based infant formula posed minimal concern and emphasized a lack of data from human subjects. Since then, several new human and animal studies have advanced our epidemiological and mechanistic understanding of the risks and benefits of phytoestrogen exposure. Here we aim to identify clinically relevant findings regarding phytoestrogen exposure and female reproductive outcomes from the past 10 years, with a focus on the phytoestrogen genistein, and explore the implications of these findings for soy infant formula recommendations. Research presented in this review will inform clinical practice and dietary recommendations for infants based on evidence from both clinical epidemiology and basic research advances in endocrinology and developmental biology from mechanistic in vitro and animal studies.
Collapse
Affiliation(s)
- Alisa A Suen
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anna C Kenan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
6
|
Pool KR, Chazal F, Smith JT, Blache D. Estrogenic Pastures: A Source of Endocrine Disruption in Sheep Reproduction. Front Endocrinol (Lausanne) 2022; 13:880861. [PMID: 35574027 PMCID: PMC9097266 DOI: 10.3389/fendo.2022.880861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Phytoestrogens can impact on reproductive health due to their structural similarity to estradiol. Initially identified in sheep consuming estrogenic pasture, phytoestrogens are known to influence reproductive capacity in numerous species. Estrogenic pastures continue to persist in sheep production systems, yet there has been little headway in our understanding of the underlying mechanisms that link phytoestrogens with compromised reproduction in sheep. Here we review the known and postulated actions of phytoestrogens on reproduction, with particular focus on competitive binding with nuclear and non-nuclear estrogen receptors, modifications to the epigenome, and the downstream impacts on normal physiological function. The review examines the evidence that phytoestrogens cause reproductive dysfunction in both the sexes, and that outcomes depend on the developmental period when an individual is exposed to phytoestrogen.
Collapse
|
7
|
Liu M, Zhang Y, Xu Q, Liu G, Sun N, Che H, He T. Apigenin Inhibits the Histamine-Induced Proliferation of Ovarian Cancer Cells by Downregulating ERα/ERβ Expression. Front Oncol 2021; 11:682917. [PMID: 34568014 PMCID: PMC8456091 DOI: 10.3389/fonc.2021.682917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022] Open
Abstract
Background Apigenin (APG), a natural flavonoid, can affect the development of a variety of tumors, but its role in ovarian cancer remains unclear. There has been an increasing amount of evidence supporting the vital role played by mast cells and the bioactive mediators they release, as components of the tumor microenvironment, in the progression of ovarian cancer (OC); however, the mechanism warrants further exploration. Methods and Results In this study, a combination of transcriptomics analysis and application of TCGA database was performed, and we found that the expression of genes related to mast cell degranulation in ovarian cancer tissues changed remarkably. We then explored whether histamine, a major constituent of mast cell degranulation, could affect the development of ovarian cancer through immunohistochemistry analysis and cell proliferation assays. The results showed that a certain concentration of histamine promoted the proliferation of ovarian cancer cells by upregulating the expression of estrogen receptor α (ERα)/estrogen receptor β (ERβ). Additionally, we found that the inhibition of ERα or the activation of ERβ could inhibit the proliferation of ovarian cancer cells induced by histamine through real-time PCR and western blot assays. Finally, we demonstrated the attenuation effect imparted by apigenin in histamine-mediated ovarian cancer via the PI3K/AKT/mTOR signaling pathway. Conclusion Our research revealed that apigenin decelerated ovarian cancer development by downregulating ER-mediated PI3K/AKT/mTOR expression, thus providing evidence of its applicability as a potentially effective therapeutic agent for ovarian cancer treatment.
Collapse
Affiliation(s)
- Manman Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yani Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiqi Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guirong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Huilian Che
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tao He
- Zhongguancun International Medical Inspection and Certification Co. Ltd, Beijing, China
| |
Collapse
|
8
|
Sleiman HK, de Oliveira JM, Langoni de Freitas GB. Isoflavones alter male and female fertility in different development windows. Biomed Pharmacother 2021; 140:111448. [PMID: 34130202 DOI: 10.1016/j.biopha.2021.111448] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Isoflavones are a group of secondary metabolites found in plants belonging to the class of phytoestrogens. These, because they have a chemical structure similar to the endogenous hormone 17β-estradiol, act as endocrine disruptors over the different development window periods. This study aimed to evaluate male and female reproductive systems' responses when exposed to isoflavones during the development window. It is characterized as a bibliographic review, built after analyzing clinical and preclinical articles indexed in English, Portuguese, and Spanish published in the last ten years. The isoflavones, aglycone or glucosides, have essential therapeutic properties in the relief of postmenopausal symptoms in women, reduce the proliferation of cancers, in addition to being antioxidants. On the other hand, they can still behave in a similar way to 17β-estradiol, binding to hormone receptors and acting as endocrine disruptors over the gestational period until pre-puberty, negatively affecting the development of the reproductive system. The effects on reproduction are not dose-response but are influenced by the type of isoflavone and period. There are variations in the serum concentration of hormones and action on their negative feedback on the hypothalamic-pituitary-testicular axis in males. Reproductive functions are also affected by spermatogenesis, such as decreased sperm count, lower reproductive performance, reduced litter size, low sperm production, and reduced seminal vesicle size. In females, puberty is reached later, irregular estrous cycle, reduced weight of the ovary, uterus, lower serum levels of estradiol and progesterone, reduced fertility, or interrupted fertility. At the end of the analysis of the selected publications, it can be concluded that despite the beneficial therapeutic effects in the face of pathologies, the unknown consumption of doses and types of isoflavones in food can damage the development and reproduction of individuals. Therefore, further studies must be carried out to elucidate the usual safe doses of the analyzed phytoestrogen. Greater control over insertion in foods targeted at pediatric consumers should be implemented until we have adequate safety.
Collapse
Affiliation(s)
| | - Jeane Maria de Oliveira
- Laboratory of Medicinal Chemistry and Biotechnology (LaQuiMB), Department of Biochemistry and Pharmacology, Federal University of Piauí, Piauí, Brazil
| | - Guilherme Barroso Langoni de Freitas
- Department of Pharmacy, State University of Centro-Oeste, Parana, Brazil; Program in Biotechnology in Human and Animal Health - (PPGBiotec), State University of Ceará, Ceará, Brazil.
| |
Collapse
|
9
|
Sridevi V, Naveen P, Karnam VS, Reddy PR, Arifullah M. Beneficiary and Adverse Effects of Phytoestrogens: A Potential Constituent of Plant-based Diet. Curr Pharm Des 2021; 27:802-815. [PMID: 32942973 DOI: 10.2174/1381612826999200917154747] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phytoestrogens are non-endocrine, non-steroidal secondary derivatives of plants and consumed through a plant-based diet also named as "dietary estrogens". The major sources of phytoestrogens are soy and soy-based foods, flaxseed, chickpeas, green beans, dairy products, etc. The dietary inclusion of phytoestrogen based foods plays a crucial role in the maintenance of metabolic syndrome cluster, including obesity, diabetes, blood pressure, cancer, inflammation, cardiovascular diseases, postmenopausal ailments and their complications. In recent days, phytoestrogens are the preferred molecules for hormone replacement therapy. On the other hand, they act as endocrine disruptors via estrogen receptor-mediated pathways. These effects are not restricted to adult males or females and identified even in development. OBJECTIVE Since phytoestrogenic occurrence is high at daily meals for most people worldwide, they focused to study for its beneficiary effects towards developing pharmaceutical drugs for treating various metabolic disorders by observing endocrine disruption. CONCLUSION The present review emphasizes the pros and cons of phytoestrogens on human health, which may help to direct the pharmaceutical industry to produce various phytoestrongen based drugs against various metabolic disorders.
Collapse
Affiliation(s)
- Vaadala Sridevi
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | - Ponneri Naveen
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | | | - Pamuru R Reddy
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | - Mohammed Arifullah
- Institute of Food Security and Sustainable Agriculture (IFSSA) & Faculty of Agrobased Industry (FIAT), Universiti Malaysia Kelantan Campus Jeli, Locked Bag 100, Jeli 17600, Kelantan, Malaysia
| |
Collapse
|
10
|
Shapira N, Kushnir T, Brandman R, Katan G, Tzivian L. Association between parental self-reported knowledge on soy and phytoestrogen and their children's intake of soy-based infant formulae-a cross-sectional study of Israeli parents. Int J Public Health 2020; 65:1079-1085. [PMID: 32712690 DOI: 10.1007/s00038-020-01413-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Though natural phytoestrogen (PE) is a major factor in health authorities' considerations regarding soy-based infant formula (SBIF), missing their concentrations may interfere with parents' informed decision. METHODS We performed an Internet survey investigating soy-related knowledge of parents. We built multiple logistic regression models adjusted for personal covariates for the association between parental knowledge on PE and children intake of SBIF and checked the effect of having children ≤ 2 years old on this association. RESULTS We enrolled 304 parents, 48.3% men, mean age 33.8 (standard deviation, SD 4.9), mostly with higher education. Of them, 76% had children under two years of age. Mean parental knowledge on PE was 9.83 (SD 3.28) from 20 possible points. Parental knowledge on PE reduced children's intake of SBIF (odds ratio, OR = 0.85 [95% confidence interval 0.70; 1.02]). Stronger inverse association was found for parents with children ≤ 2 comparing with those with older children (OR = 0.85 [0.67; 1.09] and OR = 0.68 [0.39; 1.18], respectively), although these differences were not statistically significant. CONCLUSIONS Adding PE content to information on SBIF may support informed decision.
Collapse
Affiliation(s)
- Niva Shapira
- Department of Nutrition, School of Health Professions, Ashkelon Academic College, Ashkelon, Israel
| | - Talma Kushnir
- Department of Psychology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Ruth Brandman
- Member of ESOMAR - World Association of Opinion and Marketing Research Professionals, Brandman Institute, Tel-Aviv, Israel
| | - Gali Katan
- Member of ESOMAR - World Association of Opinion and Marketing Research Professionals, Brandman Institute, Tel-Aviv, Israel
| | - Lilian Tzivian
- Faculty of Medicine, University of Latvia, Raina Blvd. 19, Riga, Latvia.
| |
Collapse
|
11
|
Mercer KE, Bhattacharyya S, Sharma N, Chaudhury M, Lin H, Yeruva L, Ronis MJ. Infant Formula Feeding Changes the Proliferative Status in Piglet Neonatal Mammary Glands Independently of Estrogen Signaling. J Nutr 2020; 150:730-738. [PMID: 31687754 PMCID: PMC7138673 DOI: 10.1093/jn/nxz273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Soy infant formula contains isoflavones, which are able to bind to and activate estrogen receptor (ER) pathways. The mammary gland is sensitive to estrogens, raising concern that the use of soy formulas may promote premature development. OBJECTIVE We aimed to determine if soy formula feeding increases mammary gland proliferation and differentiation in comparison to other infant postnatal diets. METHODS White-Dutch Landrace piglets aged 2 d received either sow milk (Sow), or were provided milk formula (Milk), soy formula (Soy), milk formula supplemented with 17-beta-estradiol (2 mg/(kg·d); M + E2), or milk formula supplemented with genistein (84 mg/L of diet; M + G) until day 21. Mammary gland proliferation and differentiation was assessed by histology, and real-time RT-PCR confirmation of differentially expressed genes identified by microarray analysis. RESULTS Mammary terminal end bud numbers were 19-31% greater in the Milk, Soy, and M + G groups relative to the Sow and M + E2, P <0.05. Microarray analysis identified differentially expressed genes between each formula-fed group relative to the Sow (±1.7-fold, P <0.05). Real-time RT-PCR confirmed 2- to 4-fold increases in mRNA transcripts of genes involved in cell proliferation, insulin-like growth factor 1 (IGF1), fibroblast growth factor 10 (FGF10), and fibroblast growth factor 18 (FGF18), in all groups relative to the Sow, P <0.05. In contrast, genes involved in cell differentiation and ductal morphogenesis, angiotensin II receptor type 2 (AGTR2), microtubule associated protein 1b (MAP1B), and kinesin family member 26b (KIF26B), were significantly upregulated by 2-, 4-, and 13-fold, respectively, in the M + E2 group. Additionally, mRNA expression of ER-specific gene targets, progesterone receptor (PGR), was increased by 12-fold, and amphiregulin (AREG) and Ras-like estrogen regulated growth inhibitor (RERG) expression by 1.5-fold in the M + E2 group, P <0.05. In the soy and M + G groups, mRNA expressions of fatty acid synthesis genes were increased 2- to 4-fold. CONCLUSIONS Our data indicate soy formula feeding does not promote ER-signaling in the piglet mammary gland. Infant formula feeding (milk- or soy-based) may initiate proliferative pathways independently of estrogenic signaling.
Collapse
Affiliation(s)
- Kelly E Mercer
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sudeepa Bhattacharyya
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Neha Sharma
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | | | - Haixia Lin
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laxmi Yeruva
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Martin J Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
12
|
Shi Z, Lv Z, Hu C, Zhang Q, Wang Z, Hamdard E, Dai H, Mustafa S, Shi F. Oral Exposure to Genistein during Conception and Lactation Period Affects the Testicular Development of Male Offspring Mice. Animals (Basel) 2020; 10:ani10030377. [PMID: 32111017 PMCID: PMC7143625 DOI: 10.3390/ani10030377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Spermatogenesis and hormones secretions are important life-threating and complicated process, which can be affected by environmental estrogens. Genistein, a type of isoflavones, widely exists in the soybean products diet, which exerts a controversial role in reproductive regulation for its special structures or functions. The results of the study revealed that low-dose genistein treatment increased the level of testosterone in the mice serum, and positively regulated expression of spermatogenesis-related genes, which enhanced spermatogenesis and testicular development. However, High-dose genistein treatment induced apoptosis of germ cells and inhibited proliferation of germ cells during spermatogenesis. Reproductive alterations in the structures and functions of testis were dose-dependent in different genistein treatments. Abstract Sexual hormones are essential for the process of spermatogenesis in the testis. However, the effect of maternal genistein (GEN) on the pups’ testicular development remain-unclear. Our present study evaluated the effects of supplementing GEN for parental and offspring mice on the reproductive function and growth performance of the male pups. Mothers during gestation and lactation period were assigned to a control diet (CON group), low dose GEN (LGE group) diet (control diet +40 mg/kg GEN), and high dose of GEN (HGE group) diet (control diet +800 mg/kg GEN). Their male offspring underwent the same treatment of GEN after weaning. LGE treatment (40 mg/kg GEN) significantly increased body weights (p < 0.001), testes weights (p < 0.05), diameters of seminiferous tubule (p < 0.001) and heights of seminiferous epithelium (p < 0.05) of offspring mice. LGE treatment also increased serum testosterone (T) levels and spermatogenesis scoring (p < 0.05). However, HGE treatment (800mg/kg GEN) significantly decreased body weights (p < 0.001), testes weights (p < 0.05) and testis sizes (p < 0.001). Furthermore, mRNA expressions of ESR2 (p < 0.05), CYP19A1 (p < 0.001), SOX9 (p < 0.001) and BRD7 (p < 0.001) in testis of mice were increased in the LGE group. Similarly, HGE treatment increased mRNA expressions of ESR2 (p < 0.05) and CYP19A1 (p < 0.001). However, mRNA expressions of SOX9 and BRD7 were decreased significantly in the HGE group (p < 0.001). Meanwhile, higher ratio apoptotic germ cells and abnormal sperms were detected in the HGE group (p < 0.001). In conclusion, exposure to a low dose of GEN during fetal and neonatal life could improve testicular development of offspring mice, whereas, unfavorable adverse effects were induced by a high dose of GEN.
Collapse
|
13
|
Greco EA, Lenzi A, Migliaccio S, Gessani S. Epigenetic Modifications Induced by Nutrients in Early Life Phases: Gender Differences in Metabolic Alteration in Adulthood. Front Genet 2019; 10:795. [PMID: 31572434 PMCID: PMC6749846 DOI: 10.3389/fgene.2019.00795] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
Metabolic chronic diseases, also named noncommunicable diseases (NCDs), are considered multifactorial pathologies, which are dramatically increased during the last decades. Noncommunicable diseases such as cardiovascular diseases, obesity, diabetes mellitus, cancers, and chronic respiratory diseases markedly increase morbidity, mortality, and socioeconomic costs. Moreover, NCDs induce several and complex clinical manifestations that lead to a gradual deterioration of health status and quality of life of affected individuals. Multiple factors are involved in the development and progression of these diseases such as sedentary behavior, smoking, pollution, and unhealthy diet. Indeed, nutrition has a pivotal role in maintaining health, and dietary imbalances represent major determinants favoring chronic diseases through metabolic homeostasis alterations. In particular, it appears that specific nutrients and adequate nutrition are important in all periods of life, but they are essential during specific times in early life such as prenatal and postnatal phases. Indeed, epidemiologic and experimental studies report the deleterious effects of an incorrect nutrition on health status several decades later in life. During the last decade, a growing interest on the possible role of epigenetic mechanisms as link between nutritional imbalances and NCDs development has been observed. Finally, because of the pivotal role of the hormones in fat, carbohydrate, and protein metabolism regulation throughout life, it is expected that any hormonal modification of these processes can imbalance metabolism and fat storage. Therefore, a particular interest to several chemicals able to act as endocrine disruptors has been recently developed. In this review, we will provide an overview and discuss the epigenetic role of some specific nutrients and chemicals in the modulation of physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Emanuela A Greco
- Section of Medical Pathophysiology, Endocrinology and Food Sciences, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Lenzi
- Section of Medical Pathophysiology, Endocrinology and Food Sciences, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Rome, Italy
| | - Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
14
|
Mallien AS, Soukup ST, Pfeiffer N, Brandwein C, Kulling SE, Chourbaji S, Gass P. Effects of Soy in Laboratory Rodent Diets on the Basal, Affective, and Cognitive Behavior of C57BL/6 Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2019; 58:532-541. [PMID: 31466555 DOI: 10.30802/aalas-jaalas-18-000129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Soy is one of the most common sources of protein in many commercial formulas for laboratory rodent diets. Soy contains isoflavones, which are estrogenic. Therefore, soy-containing animal diets might influence estrogen-regulated systems, including basal behavioral domains, as well as affective behavior and cognition. Furthermore, the isoflavone content of soy varies, potentially unpredictably confounding behavioral results. Therefore researchers are increasingly considering completely avoiding dietary soy to circumvent this problem. Several animal studies have investigated the effects of soy free diets but produced inconsistent results. In addition, most of these previous studies were performed in outbred rat or mouse strains. In the current study, we assessed whether a soy-free diet altered locomotion, exploration, nesting, anxiety-related behaviors, learning, and memory in C57BL/6 mice, the most common inbred strain used in biomedical research. The parameters evaluated address measures of basic health, natural behavior, and affective state that also are landmarks for animal welfare. We found minor differences between feeding groups but no indications of altered welfare. We therefore suggest that a soy-free diet can be used as a standard diet to prevent undesirable side effects of isoflavones and to further optimize diet standardization, quality assurance, and ultimately increase the reproducibility of experiments.
Collapse
Affiliation(s)
- Anne S Mallien
- Department of Psychiatry and Psychotherapy Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany;,
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institut, Karlsruhe, Germany
| | - Natascha Pfeiffer
- Department of Psychiatry and Psychotherapy Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christiane Brandwein
- Department of Psychiatry and Psychotherapy Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institut, Karlsruhe, Germany
| | - Sabine Chourbaji
- Interfaculty Biomedical Research Facility, Heidelberg University, Heidelberg, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
15
|
Šošić-Jurjević B, Lütjohann D, Renko K, Filipović B, Radulović N, Ajdžanović V, Trifunović S, Nestorović N, Živanović J, Manojlović Stojanoski M, Kӧhrle J, Milošević V. The isoflavones genistein and daidzein increase hepatic concentration of thyroid hormones and affect cholesterol metabolism in middle-aged male rats. J Steroid Biochem Mol Biol 2019; 190:1-10. [PMID: 30885834 DOI: 10.1016/j.jsbmb.2019.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/05/2023]
Abstract
We examined whether isoflavones interfere with thyroid homeostasis, increase hepatic thyroid hormone concentrations and affect cholesterol metabolism in middle-aged (MA) male rats. Thirteen-month-old Wistar rats were injected subcutaneously with 35 mg/kg b.w./day of genistein, daidzein or vehicle (controls) for four weeks. Hepatic Dio1 gene expression was up-regulated by 70% (p < 0.001 for both) and Dio1 enzyme activity increased by 64% after genistein (p < 0.001) and 73% after daidzein treatment (p < 0.0001). Hepatic T3 was 75% higher (p < 0.05 for both), while T4 increased only after genistein treatment. Serum T4 concentrations were 31% lower in genistein- and 49% lower in dadzein-treated rats (p < 0.001 for both) compared with controls. Hepatic Cyp7a1 gene expression was up-regulated by 40% after genistein and 32% after daidzein treatment (p < 0.05 for both), in agreement with a 7α-hydroxycholesterol increase of 50% (p < 0.01) and 88% (p < 0.001), respectively. Serum 24- and 27-hydroxycholesterol were 30% lower (p < 0.05 for both), while only 24-hydroxycholesterol was decreased in the liver by 45% after genistein (p < 0.05) and 39% (p < 0.01) after dadzein treatment. Serum concentration of the cholesterol precursor desmosterol was 32% (p < 0.05) lower only after dadzein treatment alone, while both isoflavones elevated this parameter in the liver by 45% (p < 0.01). In conclusion, isoflavones increased T3 availability in the liver of MA males, despite decreasing serum T4. Hepatic increase of T3 possibly contributes to activation of the neutral pathway of cholesterol degradation into bile acids in the liver. While isoflavones obviously have the potential to trigger multiple mechanisms involved in cholesterol metabolism and oxysterol production, they failed to induce any hypocholesterolemic effect.
Collapse
Affiliation(s)
- B Šošić-Jurjević
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| | - D Lütjohann
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - K Renko
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - B Filipović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - N Radulović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - V Ajdžanović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - S Trifunović
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - N Nestorović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - J Živanović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - M Manojlović Stojanoski
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - J Kӧhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - V Milošević
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| |
Collapse
|
16
|
Wu G, Wei Q, Yu D, Shi F. Neonatal genistein exposure disrupts ovarian and uterine development in the mouse by inhibiting cellular proliferation. J Reprod Dev 2019; 65:7-17. [PMID: 30333376 PMCID: PMC6379766 DOI: 10.1262/jrd.2018-070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Soy-based formula contains high concentrations of the isoflavone genistein. Genistein possesses estrogenic and tyrosine kinase inhibitory activity and interferes with cellular proliferation
and development. To date, the acute and chronic effects of genistein on ovarian and uterine development have not been fully elucidated. In this study, mice at postnatal day 1 were
subcutaneously injected with 100 mg/kg genistein for 10 consecutive days, and then their ovaries and uteri were collected on days 10, 21, and 90. Histological evaluation was performed after
hematoxylin and eosin staining. The proliferating activity was indicated by the proliferating indicator protein Ki67. Results showed that the subcutaneous injection of genistein to neonatal
mice induced the formation of multi-oocyte follicles and delayed the primordial follicle assembly in the ovaries. Genistein significantly enlarged the cross-sectional area of the uterine
cavity and wall and disrupted the regularity between the uterine stroma and myometrium. Genistein exposure inhibited proliferative activity because fewer Ki67-positive nuclei were detected
in ovarian and uterine cell populations than in the control. Furthermore, most ovaries from adult mice given neonatal genistein were without corpora lutea, and there appeared to be cystic
follicles and hypertrophy of the theca, and cortical and medullary layers. Considering the high concentration of isoflavone in soy-based infant formulas and livestock feed, we suggest that
the use of isoflavone-rich diets in humans and livestock receive closer examination.
Collapse
Affiliation(s)
- Guoyun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Wang D, Zhu W, Chen L, Yan J, Teng M, Zhou Z. Neonatal triphenyl phosphate and its metabolite diphenyl phosphate exposure induce sex- and dose-dependent metabolic disruptions in adult mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:10-17. [PMID: 29466770 DOI: 10.1016/j.envpol.2018.01.047] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
The widespread application of organophosphorous flame retardants (OPFRs) has led to considerable human exposure, with major concerns regarding their health risks. Herein, we investigate the effects of triphenyl phosphate (TPP), one of the most widely used OPFRs, and one of its main metabolite diphenyl phosphate (DPP) on the endocrine systems and metabolic profiles after neonatal exposure from postnatal days 1-10 at two dosages (2 and 200 μg per day). Both TPP and DPP had no negative effect on uterine weight, glucose tolerance, and estradiol. 1H-NMR-based metabolomics revealed a sex-specific metabolic disturbance of TPP. Specifically, low dose of TPP altered the metabolic profiles of male mice while exerting no significant effects on female ones. Furthermore, a dose-dependent effect of TPP in male mice was observed, where a low toxicity dose up-regulated lipid-related metabolites, while a high toxicity dose down-regulated the pyruvate metabolism and TCA cycles. These results highlight the importance of carefully assessing the health impact of TPP on infants.
Collapse
Affiliation(s)
- Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Adgent MA, Umbach DM, Zemel BS, Kelly A, Schall JI, Ford EG, James K, Darge K, Botelho JC, Vesper HW, Chandler DW, Nakamoto JM, Rogan WJ, Stallings VA. A Longitudinal Study of Estrogen-Responsive Tissues and Hormone Concentrations in Infants Fed Soy Formula. J Clin Endocrinol Metab 2018; 103:1899-1909. [PMID: 29506126 PMCID: PMC6456922 DOI: 10.1210/jc.2017-02249] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/26/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE Chemicals with hormonelike activity, such as estrogenic isoflavones, may perturb human development. Infants exclusively fed soy-based formula are highly exposed to isoflavones, but their physiologic responses remain uncharacterized. Estrogen-responsive postnatal development was compared in infants exclusively fed soy formula, cow-milk formula, and breast milk. METHODS We enrolled 410 infants born in Philadelphia-area hospitals between 2010 and 2014; 283 were exclusively fed soy formula (n = 102), cow-milk formula (n = 111), or breast milk (n = 70) throughout the study (birth to 28 or 36 weeks for boys and girls, respectively). We repeatedly measured maturation index (MI) in vaginal and urethral epithelial cells using standard cytological methods, uterine volume and breast-bud diameter using ultrasound, and serum estradiol and follicle-stimulating hormone levels. We estimated MI, organ-growth, and hormone trajectories by diet using mixed-effects regression splines. RESULTS Maternal demographics did not differ between cow-milk-fed and soy-fed infants but did differ between formula-fed and breastfed infants. Vaginal-cell MI trended higher (P = 0.01) and uterine volume decreased more slowly (P = 0.01) in soy-fed girls compared with cow-milk-fed girls; however, their trajectories of breast-bud diameter and hormone concentrations did not differ. We observed no significant differences between boys fed cow-milk vs soy formula; estradiol was not detectable. Breastfed infants differed from soy-formula-fed infants in vaginal-cell MI, uterine volume, and girls' estradiol and boys' breast-bud diameter trajectories. CONCLUSIONS Relative to girls fed cow-milk formula, those fed soy formula demonstrated tissue- and organ-level developmental trajectories consistent with response to exogenous estrogen exposure. Studies are needed to further evaluate the effects of soy on child development.
Collapse
Affiliation(s)
- Margaret A Adgent
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
- Correspondence and Reprint Requests: Margaret A. Adgent, PhD, 1313 21st Avenue S, Suite 313, Nashville, Tennessee 37232. E-mail:
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Babette S Zemel
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Andrea Kelly
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Pediatrics, Division of Endocrinology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joan I Schall
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eileen G Ford
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kerry James
- Social & Scientific Systems, Inc., Durham, North Carolina
| | - Kassa Darge
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Radiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Julianne C Botelho
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Hubert W Vesper
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Jon M Nakamoto
- Quest Diagnostics Nichols Institute, San Juan Capistrano, California
| | - Walter J Rogan
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Virginia A Stallings
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Wang W, Sun Y, Guo Y, Cai P, Li Y, Liu J, Cai G, Kiyoshi A, Zhang W. Continuous soy isoflavones exposure from weaning to maturity induces downregulation of ovarian steroidogenic factor 1 gene expression and corresponding changes in DNA methylation pattern. Toxicol Lett 2017; 281:175-183. [PMID: 28964809 DOI: 10.1016/j.toxlet.2017.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 11/26/2022]
Abstract
Female Wistar rats were treated with orally administered soy isoflavones at concentrations of 0, 25, 50, or 100mg/kg body weight from weaning until sexual maturity (3 mo.), and ovarian steroidogenesis was evaluated. After soy isoflavones were administered, a significant (P<0.05) decrease (44%) in the serum estrodial levels of the high-dose (HD) group were observed. Cultured granulosa cells from the middle- (MD) and HD groups showed significantly (P<0.05) reduced (31%, 45%, respectively) in vitro estradiol secretion, and those from the HD group showed significantly (P<0.05) reduced progesterone (25%) secretion. Compared with the control group, the mRNA expression of the steroidogenic acute regulatory protein (Star), cytochromeP450 cholesterol side chain cleavage (Cyp11a1 and Cyp19a1), and hydroxysteroid dehydrogenase 3b (Hsd3b) genes also decreased. Real-time quantitative PCR and Western blotting revealed a significant (P<0.05) decrease in key transcription factor steroidogenic factor-1 (SF-1) expression in the HD group. The detection of DNA methylation using bisulfitesequencing PCR (BSP) suggested a significantly (P<0.05) increased total methylation rate in the proximal SF-1 promoter in the HD group. Further studies showed that treatment with soy isoflavones can significantly (P<0.05) increase the mRNA expression of DNA methyltransferase (DNMT) 1 and DNMT3a. This study proved that soy isoflavone administration from weaning until sexual maturity could inhibit ovarian steroidogenesis, suggesting that SF-1 might play an important role in this effect. In addition, DNA methylation might play a role in the downregulation of SF-1 gene expression induced by soy isoflavones.
Collapse
Affiliation(s)
- Wenxiang Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yan Sun
- Center for Reproductive Medicine, Teaching Hospital of Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Yiwei Guo
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Ping Cai
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuchen Li
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jin Liu
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Guoxi Cai
- Nagasaki Prefectural Institute of Environmental Research and Public Health, Nagasaki, Japan
| | - Aoyagi Kiyoshi
- Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Wenchang Zhang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
20
|
Gray JM, Rasanayagam S, Engel C, Rizzo J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health 2017; 16:94. [PMID: 28865460 PMCID: PMC5581466 DOI: 10.1186/s12940-017-0287-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/17/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND In this review, we examine the continually expanding and increasingly compelling data linking radiation and various chemicals in our environment to the current high incidence of breast cancer. Singly and in combination, these toxicants may have contributed significantly to the increasing rates of breast cancer observed over the past several decades. Exposures early in development from gestation through adolescence and early adulthood are particularly of concern as they re-shape the program of genetic, epigenetic and physiological processes in the developing mammary system, leading to an increased risk for developing breast cancer. In the 8 years since we last published a comprehensive review of the relevant literature, hundreds of new papers have appeared supporting this link, and in this update, the evidence on this topic is more extensive and of better quality than that previously available. CONCLUSION Increasing evidence from epidemiological studies, as well as a better understanding of mechanisms linking toxicants with development of breast cancer, all reinforce the conclusion that exposures to these substances - many of which are found in common, everyday products and byproducts - may lead to increased risk of developing breast cancer. Moving forward, attention to methodological limitations, especially in relevant epidemiological and animal models, will need to be addressed to allow clearer and more direct connections to be evaluated.
Collapse
Affiliation(s)
- Janet M. Gray
- Department of Psychology and Program in Science, Technology, and Society, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604-0246 USA
| | - Sharima Rasanayagam
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| | - Connie Engel
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| | - Jeanne Rizzo
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| |
Collapse
|
21
|
Messina M, Rogero MM, Fisberg M, Waitzberg D. Health impact of childhood and adolescent soy consumption. Nutr Rev 2017; 75:500-515. [PMID: 28838083 DOI: 10.1093/nutrit/nux016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Soyfoods have been intensely researched, primarily because they provide such abundant amounts of isoflavones. Isoflavones are classified as both plant estrogens and selective estrogen receptor modulators. Evidence suggests that these soybean constituents are protective against a number of chronic diseases, but they are not without controversy. In fact, because soyfoods contain such large amounts of isoflavones, concerns have arisen that these foods may cause untoward effects in some individuals. There is particular interest in understanding the effects of isoflavones in young people. Relatively few studies involving children have been conducted, and many of those that have are small in size. While the data are limited, evidence suggests that soy does not exert adverse hormonal effects in children or affect pubertal development. On the other hand, there is intriguing evidence indicating that when soy is consumed during childhood and/or adolescence, risk of developing breast cancer is markedly reduced. Relatively few children are allergic to soy protein, and most of those who initially are outgrow their soy allergy by 10 years of age. The totality of the available evidence indicates that soyfoods can be healthful additions to the diets of children, but more research is required to allow definitive conclusions to be made.
Collapse
Affiliation(s)
- Mark Messina
- Nutrition Matters, Inc., Pittsfield, Massachusets, United States
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Mauro Fisberg
- Nutrition and Feeding Difficulty Center, Pensi Institute, José Luiz Setubal Foundation, Sabará Children's Hospital, São Paulo, Brazil
| | - Dan Waitzberg
- University of Sao Paulo Medical School and Ganep Humana Nutrition, São Paulo, Brazil
| |
Collapse
|
22
|
Hicks KD, Sullivan AW, Cao J, Sluzas E, Rebuli M, Patisaul HB. Interaction of bisphenol A (BPA) and soy phytoestrogens on sexually dimorphic sociosexual behaviors in male and female rats. Horm Behav 2016; 84:121-6. [PMID: 27373758 PMCID: PMC4996731 DOI: 10.1016/j.yhbeh.2016.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/14/2016] [Accepted: 06/28/2016] [Indexed: 01/08/2023]
Abstract
Concerns have been raised regarding the potential for endocrine disrupting compounds (EDCs) to alter brain development and behavior. Developmental exposure to bisphenol A (BPA), a ubiquitous EDC, has been linked to altered sociosexual and mood-related behaviors in various animal models and children but effects are inconsistent across laboratories and animal models creating confusion about potential risk in humans. Exposure to endocrine active diets, such as soy, which is rich in phytoestrogens, may contribute to this variability. Here, we tested the individual and combined effects of low dose oral BPA and soy diet or the individual isoflavone genistein (GEN; administered as the aglycone genistin (GIN)) on rat sociosexual behaviors with the hypothesis that soy would obfuscate any BPA-related effects. Social and activity levels were unchanged by developmental exposure to BPA but soy diet had sex specific effects including suppressed novelty preference, and open field exploration in females. The data presented here reinforce that environmental factors, including anthropogenic chemical exposure and hormone active diets, can shape complex behaviors and even reverse expected sex differences.
Collapse
Affiliation(s)
- Kimani D Hicks
- Department of Psychology, North Carolina State University, Raleigh, NC 27695, USA
| | - Alana W Sullivan
- Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; W. M. Keck Center for Behavioral Biology, Raleigh, NC 27695, USA
| | - Jinyan Cao
- Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Emily Sluzas
- Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Meghan Rebuli
- Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Heather B Patisaul
- Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; W. M. Keck Center for Behavioral Biology, Raleigh, NC 27695, USA.
| |
Collapse
|
23
|
Abstract
Cytochromes P450 (CYPs) play an important role in metabolism and clearance of most clinically utilized drugs and other xenobiotics. They are important in metabolism of endogenous compounds including fatty acids, sterols, steroids and lipid-soluble vitamins. Dietary factors such as phytochemicals are capable of affecting CYP expression and activity, which may be important in diet-drug interactions and in the development of fatty liver disease, cardiovascular disease and cancer. One important diet-CYP interaction is with diets containing plant proteins, particularly soy protein. Soy diets are traditionally consumed in Asian countries and are linked to lower incidence of several cancers and of cardiovascular disease in Asian populations. Soy is also an important protein source in vegetarian and vegan diets and the sole protein source in soy infant formulas. Recent studies suggest that consumption of soy can inhibit induction of CY1 enzymes by polycyclic aromatic hydrocarbons (PAHs) which may contribute to cancer prevention. In addition, there are data to suggest that soy components promiscuously activate several nuclear receptors including PXR, PPAR and LXR resulting in increased expression of CYP3As, CYP4As and CYPs involved in metabolism of cholesterol to bile acids. Such soy-CYP interactions may alter drug pharmacokinetics and therapeutic efficacy and are associated with improved lipid homeostasis and reduced risk of cardiovascular disease. The current review summarizes results from in vitro; in vivo and clinical studies of soy-CYP interactions and examines the evidence linking the effects of soy diets on CYP expression to isoflavone phytoestrogens, particularly, genistein and daidzein that are associated with soy protein.
Collapse
Affiliation(s)
- Martin J J Ronis
- a Department of Pharmacology & Experimental Therapeutics , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
24
|
Tschiffely AE, Schuh RA, Prokai-Tatrai K, Prokai L, Ottinger MA. A comparative evaluation of treatments with 17β-estradiol and its brain-selective prodrug in a double-transgenic mouse model of Alzheimer's disease. Horm Behav 2016; 83:39-44. [PMID: 27210479 PMCID: PMC4950979 DOI: 10.1016/j.yhbeh.2016.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 05/01/2016] [Accepted: 05/06/2016] [Indexed: 12/25/2022]
Abstract
Estrogens are neuroprotective and, thus, potentially useful for the therapy of Alzheimer's disease; however, clinical use of hormone therapy remains controversial due to adverse peripheral effects. The goal of this study was to investigate the benefits of treatment with 10β,17β-dihydroxyestra-1,4-dien-3-one (DHED), a brain-selective prodrug of 17β-estradiol, in comparison with the parent hormone using APPswe/PS1dE9 double transgenic mice to model the pathology of the disease. Ovariectomized and intact females were continuously treated with vehicle, 17β-estradiol, or DHED via subcutaneous osmotic pumps from 6 to 8months of age. We confirmed that this prolonged treatment with DHED did not stimulate uterine tissue, whereas 17β-estradiol treatment increased uterine weight. Amyloid precursor protein decreased in both treatment groups of intact, but not in ovariectomized double transgenic females in which ovariectomy already decreased the expression of this protein significantly. However, reduced brain amyloid-β peptide levels could be observed for both treatments. Consequently, double-transgenic ovariectomized and intact mice had higher cognitive performance compared to untreated control animals in response to both estradiol and DHED administrations. Overall, the tested brain-selective 17β-estradiol prodrug proved to be an effective early-stage intervention in an Alzheimer's disease-relevant mouse model without showing systemic impact and, thus, warrants further evaluation as a potential therapeutic candidate.
Collapse
Affiliation(s)
- Anna E Tschiffely
- Neuroscience and Cognitive Science Graduate Program, University of Maryland College Park, MD 20742, USA; Department of Animal and Avian Sciences, University of Maryland College Park, MD 20742, USA
| | - Rosemary A Schuh
- Research Service, VAMHCS, Baltimore, MD 21201, USA; Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katalin Prokai-Tatrai
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; AgyPharma LLC, Mansfield, TX 76063, USA
| | - Laszlo Prokai
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; AgyPharma LLC, Mansfield, TX 76063, USA.
| | - Mary Ann Ottinger
- Department of Animal and Avian Sciences, University of Maryland College Park, MD 20742, USA.
| |
Collapse
|
25
|
Ward WE, Kaludjerovic J, Dinsdale EC. A Mouse Model for Studying Nutritional Programming: Effects of Early Life Exposure to Soy Isoflavones on Bone and Reproductive Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E488. [PMID: 27187422 PMCID: PMC4881113 DOI: 10.3390/ijerph13050488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 12/17/2022]
Abstract
Over the past decade, our research group has characterized and used a mouse model to demonstrate that "nutritional programming" of bone development occurs when mice receive soy isoflavones (ISO) during the first days of life. Nutritional programming of bone development can be defined as the ability for diet during early life to set a trajectory for better or compromised bone health at adulthood. We have shown that CD-1 mice exposed to soy ISO during early neonatal life have higher bone mineral density (BMD) and greater trabecular inter-connectivity in long bones and lumbar spine at young adulthood. These skeletal sites also withstand greater forces before fracture. Because the chemical structure of ISO resembles that of 17-β-estradiol and can bind to estrogen receptors in reproductive tissues, it was prudent to expand analyses to include measures of reproductive health. This review highlights aspects of our studies in CD-1 mice to understand the early life programming effects of soy ISO on bone and reproductive health. Preclinical mouse models can provide useful data to help develop and guide the design of studies in human cohorts, which may, depending on findings and considerations of safety, lead to dietary interventions that optimize bone health.
Collapse
Affiliation(s)
- Wendy E Ward
- Department of Kinesiology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | - Jovana Kaludjerovic
- Department of Kinesiology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | - Elsa C Dinsdale
- Department of Kinesiology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
26
|
Asare GA, Akuffo G, Doku D, Asiedu B, Santa S. Dynamics of urinary oxidative stress biomarkers: 8-hydroxy-2'-deoxyguanosine and 8-isoprostane in uterine leiomyomas. J Midlife Health 2016; 14:S463-S467. [PMID: 27134475 PMCID: PMC4832898 DOI: 10.4103/0976-7800.179173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Perturbations of antioxidant levels and lipid peroxidation, but not oxidative DNA damage as a biomarker of oxidative stress have been reported in uterine myoma patients. AIMS The study aimed at examining the patterns and influence of oxidative stress/damage biomarkers, 8-isoprostane (8-IP) and 8-hydroxy-2'-deoxyguanosine (8OHdG), on the ovulatory and luteal phases of normal and fibroid women. SETTINGS AND DESIGN Twenty women diagnosed of fibroids (1-5 years) and 20 nonfibroid women were age-matched. Selection was randomly done at the National Obstetrics and Gynaecology Department. SUBJECTS AND METHODS Three successive samples of urine were taken at 8:00 am on the 14(th), 18(th), and 21(st) days of the menstrual cycle. Mid-stream urine was collected from subjects, after they had cleaned genitals. The samples were kept in an ice chest, transported to the laboratory, and stored at - 70°C until the time of analysis. Samples were analyzed by ELISA technique using commercial kits for 8OHdG and 8-IP. Results were calculated using a computer program. STATISTICAL ANALYSIS USED Statistical Package for Social Sciences, version 20.0, was used for data management and statistical analysis. The results were expressed as mean ± standard deviation. Differences in continuous data were compared using Student's t-test (two groups) and one-way ANOVA (three or more groups) followed by Bonferroni post hoc test. Relationship between variables was ascertained by Spearman's correlation coefficient. All results were considered significant at 5% level of probability. RESULTS Significant differences were observed between day 14 and day 21 in control and test groups' estrogen levels (P = 0.0047 and P = 0.004, respectively). Significant progesterone differences were observed between control and test groups on the same days (P = 0.002 and P = 0.001, respectively). A positive correlation was observed between day 21 estrogen and progesterone levels (P = 0.0003) of the control group. Test group had higher levels of 8-IP and 8OHdG than control groups on day 21, with 8OHdG at maximum in the test group but minimum in the control group. The influence of 8OHdG was seen by a negative correlation with estrogen and progesterone on day 21 (P = 0.0002) and a positive correlation between 8OHdG and 8-IP on the same day in the test group. Finally, there was a positive correlation between 8-IP and 8OHdG on day 14, but a negative correlation on day 21 (P = 0.0016). CONCLUSIONS Oxidative damage was absent in the control group but was very much present in the test group on day 14 and day 21 with progesterone and estrogen acting in concert with oxidative damage biomarkers. An inverse pattern of biomarkers was observed between control and fibroid groups. Oxidative stress biomarkers influenced hormonal levels and pattern of the fibroid group.
Collapse
Affiliation(s)
- George Awuku Asare
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| | - Golda Akuffo
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| | - Derek Doku
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| | - Bernice Asiedu
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| | - Sheila Santa
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| |
Collapse
|
27
|
Pharmacokinetics of isoflavones from soy infant formula in neonatal and adult rhesus monkeys. Food Chem Toxicol 2016; 92:165-76. [PMID: 27084109 DOI: 10.1016/j.fct.2016.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Consumption of soy infant formula represents a unique exposure scenario in which developing children ingest a mixture of endocrine-active isoflavones along with a substantial portion of daily nutrition. Genistein and daidzein were administered as glucoside conjugates to neonatal rhesus monkeys in a fortified commercial soy formula at 5, 35, and 70 days after birth. A single gavage dosing with 10 mg/kg bw genistein and 6 mg/kg bw daidzein was chosen to represent the upper range of typical daily consumption and to facilitate complete pharmacokinetic measurements for aglycone and total isoflavones and equol. Adult monkeys were also gavaged with the same formula solution at 2.8 and 1.6 mg/kg bw genistein and daidzein, respectively, and by IV injection with isoflavone aglycones (5.2 and 3.2 mg/kg bw, respectively) to determine absolute bioavailability. Significant differences in internal exposure were observed between neonatal and adult monkeys, with higher values for dose-adjusted AUC and Cmax of the active aglycone isoflavones in neonates. The magnitude and frequency of equol production by the gut microbiome were also significantly greater in adults. These findings are consistent with immaturity of metabolic and/or physiological systems in developing non-human primates that reduces total clearance of soy isoflavones from the body.
Collapse
|
28
|
Zama AM, Bhurke A, Uzumcu M. Effects of Endocrine-disrupting Chemicals on Female Reproductive Health. ACTA ACUST UNITED AC 2016. [DOI: 10.2174/1874070701610010054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are increasingly prevalent in the environment and the evidence demonstrates that they affect reproductive health, has been accumulating for the last few decades. In this review of recent literature, we present evidence of the effects of estrogen-mimicking EDCs on female reproductive health especially the ovaries and uteri. As representative EDCs, data from studies with a pharmaceutical estrogen, diethylstilbestrol (DES), an organochlorine pesticide methoxychlor (MXC), a phytoestrogen (genistein), and a chemical used in plastics, bisphenol a (BPA) have been presented. We also discuss the effects of a commonly found plasticizer in the environment, a phthalate (DEHP), even though it is not a typical estrogenic EDC. Collectively, these studies show that exposures during fetal and neonatal periods cause developmental reprogramming leading to adult reproductive disease. Puberty, estrous cyclicity, ovarian follicular development, and uterine functions are all affected by exposure to these EDCs. Evidence that epigenetic modifications are involved in the progression to adult disease is also presented.
Collapse
|
29
|
Ronis MJ, Gomez-Acevedo H, Blackburn ML, Cleves MA, Singhal R, Badger TM. Uterine responses to feeding soy protein isolate and treatment with 17β-estradiol differ in ovariectomized female rats. Toxicol Appl Pharmacol 2016; 297:68-80. [PMID: 26945725 DOI: 10.1016/j.taap.2016.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 12/23/2022]
Abstract
There are concerns regarding reproductive toxicity from consumption of soy foods, including an increased risk of endometriosis and endometrial cancer, as a result of phytoestrogen consumption. In this study, female rats were fed AIN-93G diets made with casein (CAS) or soy protein isolate (SPI) from postnatal day (PND) 30, ovariectomized on PND 50 and infused with 5 μg/kg/d 17β-estradiol (E2) or vehicle. E2 increased uterine wet weight (P<0.05). RNAseq analysis revealed that E2 significantly altered expression of 1991 uterine genes (P<0.05). SPI feeding had no effect on uterine weight and altered expression of far fewer genes than E2 at 152 genes (P<0.05). Overlap between E2 and SPI genes was limited to 67 genes. Functional annotation analysis indicated significant differences in uterine biological processes affected by E2 and SPI and little evidence for recruitment of estrogen receptor (ER)α to the promoters of ER-responsive genes after SPI feeding. The major E2 up-regulated uterine pathways were carcinogenesis and extracellular matrix organization, whereas SPI feeding up-regulated uterine peroxisome proliferator activated receptor (PPAR) signaling and fatty acid metabolism. The combination of E2 and SPI resulted in significant regulation of 504 fewer genes relative to E2 alone. The ability of E2 to induce uterine proliferation in response to the carcinogen dimethybenz(a)anthracene (DMBA) as measured by expression of PCNA and Ki67 mRNA was suppressed by feeding SPI (P<0.05). These data suggest that SPI is a selective estrogen receptor modulator (SERM) interacting with a small sub-set of E2-regulated genes and is anti-estrogenic in the presence of endogenous estrogens.
Collapse
Affiliation(s)
- Martin J Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States.
| | - Horacio Gomez-Acevedo
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, United States
| | - Michael L Blackburn
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, United States
| | - Mario A Cleves
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, United States; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, United States
| | - Rohit Singhal
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72202, United States
| | - Thomas M Badger
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, United States; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, United States
| |
Collapse
|
30
|
Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles. Toxicol Appl Pharmacol 2016; 293:53-62. [PMID: 26792615 DOI: 10.1016/j.taap.2015.12.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/02/2015] [Accepted: 12/30/2015] [Indexed: 01/25/2023]
Abstract
Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36μM) for 18-96h. Every 24h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96h, and the expression of cell cycle regulators at 18h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles.
Collapse
|
31
|
Combinatorial effects of genistein and sex-steroids on the level of cystic fibrosis transmembrane regulator (CFTR), adenylate cyclase (AC) and cAMP in the cervix of ovariectomised rats. Reprod Toxicol 2015; 58:194-202. [PMID: 26529183 DOI: 10.1016/j.reprotox.2015.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 10/19/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022]
Abstract
The combinatorial effects of genistein and estrogen (E) or estrogen plus progesterone (E+P) on CFTR, AC and cAMP levels in cervix were investigated. Ovariectomised adult female rats received 50 or 100mg/kg/day genistein with E or E followed by E+P [E+(E+P)] for seven consecutive days. Cervixes were harvested and analyzed for CFTR mRNA levels by Real-time PCR. Distribution of AC and CFTR proteins in endocervix were observed by immunohistochemistry. Levels of cAMP were measured by enzyme-immunoassay. Molecular docking predicted interaction between genistein and AC. Our results indicate that levels of CFTR, AC and cAMP in cervix of rats receiving genistein plus E were higher than E-only treatment (p<0.05) while genistein plus [E+(E+P)] were higher than E+(E+P)-only treatment (p<0.05). In conclusions, increased levels of CFTR, AC and cAMP in cervix of E and E+(E+P)-treated rats by genistein could affect the cervical secretory function which could influence the female reproductive processes.
Collapse
|
32
|
Cao J, Echelberger R, Liu M, Sluzas E, McCaffrey K, Buckley B, Patisaul HB. Soy but not bisphenol A (BPA) or the phytoestrogen genistin alters developmental weight gain and food intake in pregnant rats and their offspring. Reprod Toxicol 2015. [PMID: 26216788 DOI: 10.1016/j.reprotox.2015.07.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endocrine disrupting compounds (EDCs) are hypothesized to promote obesity and early puberty but their interactive effects with hormonally active diets are poorly understood. Here we assessed individual and combinatorial effects of soy diet or the isoflavone genistein (GEN; administered as the aglycone genistin GIN) with bisphenol A (BPA) on body weight, ingestive behavior and female puberal onset in Wistar rats. Soy-fed dams gained less weight during pregnancy and, although they consumed more than dams on a soy-free diet during lactation, did not become heavier. Their offspring (both sexes), however, became significantly heavier (more pronounced in males) pre-weaning. Soy also enhanced food intake and accelerated female pubertal onset in the offspring. Notably, pubertal onset was also advanced in females placed on soy diet at weaning. Males exposed to BPA plus soy diet, but not BPA alone, had lighter testes. BPA had no independent effects.
Collapse
Affiliation(s)
- Jinyan Cao
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Roger Echelberger
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Min Liu
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Emily Sluzas
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Katherine McCaffrey
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
33
|
Parent AS, Franssen D, Fudvoye J, Gérard A, Bourguignon JP. Developmental variations in environmental influences including endocrine disruptors on pubertal timing and neuroendocrine control: Revision of human observations and mechanistic insight from rodents. Front Neuroendocrinol 2015; 38:12-36. [PMID: 25592640 DOI: 10.1016/j.yfrne.2014.12.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022]
Abstract
Puberty presents remarkable individual differences in timing reaching over 5 years in humans. We put emphasis on the two edges of the age distribution of pubertal signs in humans and point to an extended distribution towards earliness for initial pubertal stages and towards lateness for final pubertal stages. Such distortion of distribution is a recent phenomenon. This suggests changing environmental influences including the possible role of nutrition, stress and endocrine disruptors. Our ability to assess neuroendocrine effects and mechanisms is very limited in humans. Using the rodent as a model, we examine the impact of environmental factors on the individual variations in pubertal timing and the possible underlying mechanisms. The capacity of environmental factors to shape functioning of the neuroendocrine system is thought to be maximal during fetal and early postnatal life and possibly less important when approaching the time of onset of puberty.
Collapse
Affiliation(s)
- Anne-Simone Parent
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; Department of Pediatrics, CHU de Liège, Rue de Gaillarmont 600, B-4032 Chênée, Belgium
| | - Delphine Franssen
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium
| | - Julie Fudvoye
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; Department of Pediatrics, CHU de Liège, Rue de Gaillarmont 600, B-4032 Chênée, Belgium
| | - Arlette Gérard
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; Department of Pediatrics, CHU de Liège, Rue de Gaillarmont 600, B-4032 Chênée, Belgium
| | - Jean-Pierre Bourguignon
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; Department of Pediatrics, CHU de Liège, Rue de Gaillarmont 600, B-4032 Chênée, Belgium.
| |
Collapse
|
34
|
Patisaul HB, Mabrey N, Adewale HB, Sullivan AW. Soy but not bisphenol A (BPA) induces hallmarks of polycystic ovary syndrome (PCOS) and related metabolic co-morbidities in rats. Reprod Toxicol 2014; 49:209-18. [PMID: 25242113 DOI: 10.1016/j.reprotox.2014.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/31/2014] [Accepted: 09/10/2014] [Indexed: 01/14/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is the most common female endocrine disorder with a prevalence as high as 8-15% depending on ethnicity and the diagnostic criteria employed. The basic pathophysiology and mode of inheritance remain unclear, but environmental factors such as diet, stress and chemical exposures are thought to be contributory. Developmental exposure to endocrine disrupting compounds (EDCs) have been hypothesized to exacerbate risk, in part because PCOS hallmarks and associated metabolic co-morbidities can be reliably induced in animal models by perinatal androgen exposure. Here we show that lifetime exposure to a soy diet, containing endocrine active phytoestrogens, but not developmental exposure (gestational day 6-lactational day 40) to the endocrine disrupting monomer bisphenol A (BPA), can induce key features of PCOS in the rat; results which support the hypothesis that hormonally active diets may contribute to risk when consumed throughout gestation and post-natal life.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA.
| | - Natalie Mabrey
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Heather B Adewale
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Alana W Sullivan
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
35
|
Soy isoflavones administered to rats from weaning until sexual maturity affect ovarian follicle development by inducing apoptosis. Food Chem Toxicol 2014; 72:51-60. [PMID: 25035168 DOI: 10.1016/j.fct.2014.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/03/2014] [Accepted: 07/06/2014] [Indexed: 01/25/2023]
Abstract
Twenty-one-day-old female Wistar rats were treated daily with orally administered soy isoflavones (SIFs) at concentrations of 50, 100, or 200 mg/kg body weight from weaning until sexual maturity (3 mo.), and ovarian follicle development was evaluated. At the end of the treatment period, the ultrastructure of the ovarian granulosa cells was examined by transmission electron microscopy. The apoptotic cell death of ovarian granulosa cells was detected using TUNEL staining. The mRNA expression levels of caspase-3, caspase-8, caspase-9, Bcl2, Bax, and Fas were determined by real-time quantitative PCR. The protein expression levels of caspase-3, Bcl2, Bax, and Fas were determined by western blotting. Our data showed that exposure to SIFs resulted in morphological changes consistent with ovarian granulosa cell apoptosis. The percentage of TUNEL-positive granulosa cells was increased. The mRNA expression levels of the apoptosis-related genes caspase-3, caspase-8, caspase-9, Bax, and Fas increased significantly. The protein levels of Bax, Fas, and cleaved caspase-3 were also increased. These results indicate that the exposure of rats to modest doses of SIFs from weaning until sexual maturity can affect ovarian follicle development by inducing apoptosis. The mechanism of SIF-induced alterations in ovarian follicle development may involve the activation of Fas-mediated and Bcl2/Bax-mediated apoptotic signaling pathways.
Collapse
|
36
|
Barlas N, Özer S, Karabulut G. The estrogenic effects of apigenin, phloretin and myricetin based on uterotrophic assay in immature Wistar albino rats. Toxicol Lett 2014; 226:35-42. [PMID: 24487097 DOI: 10.1016/j.toxlet.2014.01.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 11/25/2022]
Abstract
Chemicals that occur in vegetal food and known as phytoestrogens, because of their structures similarity to estrogen, have benefits on chronic diseases. Despite this, when they are taken at high amounts, they can cause harmful effects on endocrine system of human and animals. In this study, it has been intended to determine the estrogenic potencies of phytoestrogens apigenin, phloretin and myricetin whose affinities for estrogen receptors in vitro. The female rats divided into 17 groups, each containing six rats. There was a negative control group and there were positive control dose groups which contains ethinyl estradiol, ethinyl estradiol+tamoxifen and genistein. The other dose groups which were tested for estrogenic activity contains apigenin, myricetin and phloretin All chemicals have been given to Wistar immature female rats with oral gavage for 3 consecutive days. By using uterotrophic analysis, uterus wet and blotted weights, vaginal opening, uterus length of female rats has been recorded at the end of the experiment. For detect of cell response, luminal epithelium height, gland number and lactoferrin intensity in luminal epithelium of uterus were evaluated. Biochemical analysises in blood were performed. Relative uterus weights of rats in 100 mg/kg/day dose group of myricetin were statistically increased according to vehicle control and positive control groups. In dose groups of apigenin and phloretin it was found that there were cell responses in uterus. All treatment groups had a significant difference in the high intensity of lactoferrin and uterine gland count compared to oil control group. There was no difference between phloretin and apigenin treatment groups in uterine weight statictically. Uterine heights were increased in positive control groups and 100 mg/kg/day dose group of myricetin. Epithelial cell heights were increased in treatment groups except apigenin and phloretin dose groups. There was no difference between all treatment groups in vaginal opening values according to positive control.
Collapse
Affiliation(s)
- Nurhayat Barlas
- Hacettepe University, Faculty of Science, Department of Biology, Beytepe Campus, 06800, Ankara, Turkey.
| | - Saadet Özer
- Hacettepe University, Faculty of Science, Department of Biology, Beytepe Campus, 06800, Ankara, Turkey
| | - Gözde Karabulut
- Hacettepe University, Faculty of Science, Department of Biology, Beytepe Campus, 06800, Ankara, Turkey
| |
Collapse
|
37
|
Effects of perinatal ethinyl estradiol exposure in male and female Wistar rats. Reprod Toxicol 2013; 42:180-91. [DOI: 10.1016/j.reprotox.2013.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/08/2013] [Accepted: 09/04/2013] [Indexed: 11/23/2022]
|
38
|
Miousse IR, Sharma N, Blackburn M, Vantrease J, Gomez-Acevedo H, Hennings L, Shankar K, Cleves MA, Badger TM, Ronis MJJ. Feeding soy protein isolate and treatment with estradiol have different effects on mammary gland morphology and gene expression in weanling male and female rats. Physiol Genomics 2013; 45:1072-83. [DOI: 10.1152/physiolgenomics.00096.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isoflavones are phytochemical components of soy diets that bind weakly to estrogen receptors (ERs). To study potential estrogen-like actions of soy in the mammary gland during early development, we fed weanling male and female Sprague-Dawley rats a semipurified diet with casein as the sole protein source from postnatal day 21 to 33, the same diet substituting soy protein isolate (SPI) for casein, or the casein diet supplemented with estradiol (E2) at 10 μg/kg/day. In contrast to E2, the SPI diet induced no significant change in mammary morphology. In males, there were 34 genes for which expression was changed ≥2-fold in the SPI group vs. 509 changed significantly by E2, and 8 vs. 174 genes in females. Nearly half of SPI-responsive genes in males were also E2 responsive, including adipogenic genes. Serum insulin was found to be decreased by the SPI diet in males. SPI and E2 both downregulated the expression of ERα ( Esr1) in males and females, and ERβ ( Esr2) only in males. Chromatin immunoprecipitation revealed an increased binding of ERα to the promoter of the progesterone receptor ( Pgr) and Esr1 in both SPI- and E2-treated males compared with the casein group but differential recruitment of ERβ. ER promoter binding did not correlate with differences in Pgr mRNA expression. This suggests that SPI fails to recruit appropriate co-activators at E2-inducible genes. Our results indicate that SPI behaves like a selective estrogen receptor modulator rather than a weak estrogen in the developing mammary gland.
Collapse
Affiliation(s)
- Isabelle R. Miousse
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Neha Sharma
- Arkansas Children's Nutrition Center, Little Rock Arkansas
| | - Michael Blackburn
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Horacio Gomez-Acevedo
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Leah Hennings
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Kartik Shankar
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mario A. Cleves
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Thomas M. Badger
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Martin J. J. Ronis
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
39
|
Kang HK, Lee SB, Kwon H, Sung CK, Park YI, Dong MS. Peripubertal administration of icariin and icaritin advances pubertal development in female rats. Biomol Ther (Seoul) 2013; 20:189-95. [PMID: 24116294 PMCID: PMC3792217 DOI: 10.4062/biomolther.2012.20.2.189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 12/15/2022] Open
Abstract
Epimedii Herba is a traditional medicinal herb used in Korea and China and exerts estrogenic activity. In this study, we investigated the effect of peripubertal administration of Epimedii Herba on pubertal development in female rats using a modified protocol of the rodent 20-day pubertal female assay. Female Sprague-Dawley rats (21 days old after weaning, 10 rats per group) were divided into five groups: saline (Con), ethinyl estradiol (E2), Epimedii Herba ext (Ext), icariin (ICI), and icaritin (ICT), which were administered by oral gavage (E2 by subcutaneous injection) from postnatal day (PND) 21 through PND40. The time to vaginal opening (VO) was shorter for the Epimedii groups, particularly for the ICT group (p<0.05). Treatment with ICI and ICT significantly increased the duration of the estrus cycle (ICI, 2.78 days; ICT, 4.0 days; control, 1.78 days). Ovary weight was reduced by E2 treatment and increased by the Ext, ICI, and ICT treatments while the weight of the uterus and pituitary glands increased significantly only in the E2 and ICT groups. Although Epimedii Herba displayed relatively weak estrogenic activity, its repeated administration could affect pubertal development in female rats.
Collapse
Affiliation(s)
- Hyun Ku Kang
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701
| | | | | | | | | | | |
Collapse
|
40
|
Wang W, Zhang W, Liu J, Sun Y, Li Y, Li H, Xiao S, Shen X. Metabolomic changes in follicular fluid induced by soy isoflavones administered to rats from weaning until sexual maturity. Toxicol Appl Pharmacol 2013; 269:280-9. [PMID: 23454585 DOI: 10.1016/j.taap.2013.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/06/2013] [Accepted: 02/11/2013] [Indexed: 01/29/2023]
Abstract
Female Wistar rats at 21 days of age were treated with one of three concentrations of soy isoflavones (SIF) (50, 100 or 200mg/kg body weight, orally, once per day) from weaning until sexual maturity (3 months) in order to evaluate the influence of SIF on ovarian follicle development. After treatment, the serum sex hormone levels and enumeration of ovarian follicles of the ovary were measured. The metabolic profile of follicular fluid was determined using HPLC-MS. Principal component analysis (PCA) and partial least-squares-discriminant analysis (PLS-DA) was used to identify differences in metabolites and reveal useful toxic biomarkers. The results indicated that modest doses of SIF affect ovarian follicle development, as demonstrated by decreased serum estradiol levels and increases in both ovarian follicle atresia and corpora lutea number in the ovary. SIF treatment-related metabolic alterations in follicular fluid were also found in the PCA and PLS-DA models. The 24 most significantly altered metabolites were identified, including primary sex hormones, amino acids, fatty acids and metabolites involved in energy metabolism. These findings may indicate that soy isoflavones affect ovarian follicle development by inducing metabolomic variations in the follicular fluid.
Collapse
Affiliation(s)
- Wenxiang Wang
- Department of Nutrition and Health Care, School of Public Health, Fujian Medical University, Fuzhou, Fujian, PR China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Salleh N, Helmy MM, Fadila KN, Yeong SO. Isoflavone genistein induces fluid secretion and morphological changes in the uteri of post-pubertal rats. Int J Med Sci 2013; 10:665-75. [PMID: 23569430 PMCID: PMC3619115 DOI: 10.7150/ijms.5207] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/04/2013] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED A reported increase in the incidence of infertility following high genistein intake could be related to alteration in the normal fluid volume and morphology of the uterus in adult female. In view of this, we investigated the effect of this compound on fluid secretion, fluid volume and morphology of the uterus in post-pubertal rats. METHODS Ovariectomised SD rats were treated with 17-β oestradiol (E) (0.8 X 10(-4) mg/kg/day) and genistein (0.5, 5, 10, 25, 50 and 100 mg/kg/day) for three days. Following drug treatment, in-vivo uterine perfusion was performed and the rate of fluid secretion and the volume of fluid in the uterus were determined via changes in weight (μl/min) and F-dextran concentration of the perfusate respectively. The animals were then sacrificed and the uteri were removed for weight determination, morphological analyses and proliferative cell nuclear antigen (PCNA) expression analyses by Western blotting. RESULTS Subcutaneous genistein treatment resulted in a dose-dependent increase in fluid secretion rate, fluid volume and uterine wet weight. Treatment with 100 mg/kg/day genistein resulted in a remarkable increase in the rate of uterine fluid secretion, the volume of the uterine luminal fluid as well as the circumference of the uterine and uterine glandular lumen suggesting an excessive fluid accumulation. Meanwhile, there were evidence of glandular hyperplasia and an increase in the expression of PCNA following treatment with 50 and 100 mg/kg/day genistein. CONCLUSION High genistein intake could potentially cause adverse effects on the uterus by inducing excessive fluid secretion and accumulation as well as hyperplasia.
Collapse
Affiliation(s)
- Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
42
|
Wocławek-Potocka I, Mannelli C, Boruszewska D, Kowalczyk-Zieba I, Waśniewski T, Skarżyński DJ. Diverse effects of phytoestrogens on the reproductive performance: cow as a model. Int J Endocrinol 2013; 2013:650984. [PMID: 23710176 PMCID: PMC3655573 DOI: 10.1155/2013/650984] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/04/2013] [Indexed: 12/12/2022] Open
Abstract
Phytoestrogens, polyphenolic compounds derived from plants, are more and more common constituents of human and animal diets. In most of the cases, these chemicals are much less potent than endogenous estrogens but exert their biological effects via similar mechanisms of action. The most common source of phytoestrogen exposure to humans as well as ruminants is soybean-derived foods that are rich in the isoflavones genistein and daidzein being metabolized in the digestive tract to even more potent metabolites-para-ethyl-phenol and equol. Phytoestrogens have recently come into considerable interest due to the increasing information on their adverse effects in human and animal reproduction, increasing the number of people substituting animal proteins with plant-derived proteins. Finally, the soybean becomes the main source of protein in animal fodder because of an absolute prohibition of bone meal use for animal feeding in 1995 in Europe. The review describes how exposure of soybean-derived phytoestrogens can have adverse effects on reproductive performance in female adults.
Collapse
Affiliation(s)
- Izabela Wocławek-Potocka
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
| | - Chiara Mannelli
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
- Department of Life Sciences, Doctoral School in Life Sciences, University of Siena, Miniato via A. Moro 2 St., 53100 Siena, Italy
| | - Dorota Boruszewska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
| | - Ilona Kowalczyk-Zieba
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
| | - Tomasz Waśniewski
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Warmia and Masuria, Zolnierska 14 C St., 10-561 Olsztyn, Poland
| | - Dariusz J. Skarżyński
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
- *Dariusz J. Skarżyński:
| |
Collapse
|
43
|
Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey. Proc Natl Acad Sci U S A 2012; 109:17525-30. [PMID: 23012422 DOI: 10.1073/pnas.1207854109] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Widespread use of the endocrine disrupting chemical bisphenol A (BPA) in consumer products has resulted in nearly continuous human exposure. In rodents, low-dose exposures have been reported to adversely affect two distinct stages of oogenesis in the developing ovary: the events of prophase at the onset of meiosis in the fetal ovary and the formation of follicles in the perinatal ovary. Because these effects could influence the reproductive longevity and success of the exposed individual, we conducted studies in the rhesus monkey to determine whether BPA induces similar disturbances in the developing primate ovary. The routes and levels of human exposure are unclear; hence, two different exposure protocols were used: single daily oral doses and continuous exposure via subdermal implant. Our analyses of second trimester fetuses exposed at the time of meiotic onset suggest that, as in mice, BPA induces subtle disturbances in the prophase events that set the stage for chromosome segregation at the first meiotic division. Our analyses of third-trimester fetuses exposed to single daily oral doses during the time of follicle formation revealed an increase in multioocyte follicles analogous to that reported in rodents. However, two unique phenotypes were evident in continuously exposed animals: persistent unenclosed oocytes in the medullary region and small, nongrowing oocytes in secondary and antral follicles. Because effects on both stages of oogenesis were elicited using doses that yield circulating levels of BPA analogous to those reported in humans, these findings raise concerns for human reproductive health.
Collapse
|
44
|
Seppen J. A diet containing the soy phytoestrogen genistein causes infertility in female rats partially deficient in UDP glucuronyltransferase. Toxicol Appl Pharmacol 2012; 264:335-42. [PMID: 23000043 DOI: 10.1016/j.taap.2012.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 01/09/2023]
Abstract
Soy beans contain genistein, a natural compound that has estrogenic effects because it binds the estrogen receptor with relatively high affinity. Genistein is therefore the most important environmental estrogen in the human diet. Detoxification of genistein is mediated through conjugation by UDP-glucuronyltransferase 1 and 2 (UGT1 and UGT2) isoenzymes. Gunn rats have a genetic deficiency in UGT1 activity, UGT2 activities are not affected. Because our Gunn rats stopped breeding after the animal chow was changed to a type with much higher soy content, we examined the mechanism behind this soy diet induced infertility. Gunn and control rats were fed diets with and without genistein. In these rats, plasma levels of genistein and metabolites, fertility and reproductive parameters were determined. Enzyme assays showed reduced genistein UGT activity in Gunn rats, as compared to wild type rats. Female Gunn rats were completely infertile on a genistein diet, wild type rats were fertile. Genistein diet caused a persistent estrus, lowered serum progesterone and inhibited development of corpora lutea in Gunn rats. Concentrations of total genistein in Gunn and control rat plasma were identical and within the range observed in humans after soy consumption. However, Gunn rat plasma contained 25% unconjugated genistein, compared to 3.6% in control rats. This study shows that, under conditions of reduced glucuronidation, dietary genistein exhibits a strongly increased estrogenic effect. Because polymorphisms that reduce UGT1 expression are prevalent in the human population, these results suggest a cautionary attitude towards the consumption of large amounts of soy or soy supplements.
Collapse
Affiliation(s)
- Jurgen Seppen
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, S1-166, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Karavan JR, Pepling ME. Effects of estrogenic compounds on neonatal oocyte development. Reprod Toxicol 2012; 34:51-6. [DOI: 10.1016/j.reprotox.2012.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 01/20/2012] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
|
46
|
Cederroth CR, Zimmermann C, Nef S. Soy, phytoestrogens and their impact on reproductive health. Mol Cell Endocrinol 2012; 355:192-200. [PMID: 22210487 DOI: 10.1016/j.mce.2011.05.049] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/06/2011] [Accepted: 05/13/2011] [Indexed: 11/24/2022]
Abstract
There is growing interest in the potential health threats posed by endocrine-disrupting chemicals (EDCs) to the reproductive system. Soybean is the most important dietary source of isoflavones, an important class of phytoestrogen. While consumption of soy food or phytoestrogen supplements has been frequently associated with beneficial health effects, the potentially adverse effects on development, fertility, and the reproductive and endocrine systems are likely underappreciated. Here we review the available epidemiological, clinical and animal data on the effects of soy and phytoestrogens on the development and function of the male and female reproductive system, and weigh the evidence as to their detrimental impact.
Collapse
Affiliation(s)
- Christopher Robin Cederroth
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | | | | |
Collapse
|
47
|
Spencer TE, Dunlap KA, Filant J. Comparative developmental biology of the uterus: insights into mechanisms and developmental disruption. Mol Cell Endocrinol 2012; 354:34-53. [PMID: 22008458 DOI: 10.1016/j.mce.2011.09.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/19/2011] [Accepted: 09/22/2011] [Indexed: 01/30/2023]
Abstract
The uterus is an essential organ for reproduction in mammals that derives from the Müllerian duct. Despite the importance of the uterus for the fertility and health of women and their offspring, relatively little is known about the hormonal, cellular and molecular mechanisms that regulate development of the Müllerian duct and uterus. This review aims to summarize the hormonal, cellular and molecular mechanisms and pathways governing development of the Müllerian duct and uterus as well as highlight developmental programming effects of endocrine disruptor compounds. Organogenesis, morphogenesis, and functional differentiation of the uterus are complex, multifactorial processes. Disruption of uterine development in the fetus and neonate by genetic defects and exposure to endocrine disruptor compounds can cause infertility and cancer in the adult and their offspring via developmental programming. Clear conservation of some factors and pathways are observed between species; therefore, comparative biology is useful to identify candidate genes and pathways underlying congenital abnormalities in humans.
Collapse
Affiliation(s)
- Thomas E Spencer
- Center for Reproductive Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164-6310, USA.
| | | | | |
Collapse
|
48
|
Doerge DR, Twaddle NC, Vanlandingham M, Fisher JW. Pharmacokinetics of bisphenol A in serum and adipose tissue following intravenous administration to adult female CD-1 mice. Toxicol Lett 2012; 211:114-9. [PMID: 22465602 DOI: 10.1016/j.toxlet.2012.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Bisphenol A (BPA) is an important industrial chemical used as the monomer for polycarbonate plastic and in epoxy resins for use in food can liners. Worldwide biomonitoring studies consistently find high prevalence of BPA conjugates in urine consistent with pervasive exposure at levels typically below 1 μg/kg bw/day. The current study used LC/MS/MS to measure serum pharmacokinetics of unconjugated (active) and conjugated (inactive) BPA in adult female CD-1 mice following intravenous (IV) injection, which produces higher serum levels by circumventing the processes of absorption from the GI tract and presystemic metabolism that occur after oral administration. Deuterated BPA (100 μg/kg bw) was used to avoid interference by background contamination from trace amounts of native BPA. Additionally, the pharmacokinetics of unconjugated BPA were determined in adipose tissue, a proposed site of action and "depot" for BPA. After IV injection, unconjugated BPA rapidly distributed out of the circulation (t(1/2)=0.2 h) and terminal elimination also proceeded rapidly (t(1/2)=0.8 h). Consistent with the degree of aqueous solubility, lipid/water solubility ratio, and partitioning from blood into adipose tissue in vivo, the levels of unconjugated BPA in mouse adipose tissue rapidly reached a maximal level (0.25 h) that did not exceed the serum maximum at the initial sampling time (0.08 h). Terminal elimination of unconjugated BPA from adipose tissue (t(1/2)=7.0 h) was similar to that for conjugated BPA in serum (t(1/2)=6.6 h) and <0.01% of the administered dose remained in adipose tissue after 24 h. These plasma and tissue kinetics are consistent with rapid equilibria and underscore the non-persistent nature of BPA, particularly when compared with slowly metabolized lipophilic organic pollutants like halogenated dibenzodioxins.
Collapse
Affiliation(s)
- Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | | | | | | |
Collapse
|
49
|
Jefferson WN, Patisaul HB, Williams CJ. Reproductive consequences of developmental phytoestrogen exposure. Reproduction 2012; 143:247-60. [PMID: 22223686 PMCID: PMC3443604 DOI: 10.1530/rep-11-0369] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phytoestrogens, estrogenic compounds derived from plants, are ubiquitous in human and animal diets. These chemicals are generally much less potent than estradiol but act via similar mechanisms. The most common source of phytoestrogen exposure to humans is soybean-derived foods that are rich in the isoflavones genistein and daidzein. These isoflavones are also found at relatively high levels in soy-based infant formulas. Phytoestrogens have been promoted as healthy alternatives to synthetic estrogens and are found in many dietary supplements. The aim of this review is to examine the evidence that phytoestrogen exposure, particularly in the developmentally sensitive periods of life, has consequences for future reproductive health.
Collapse
Affiliation(s)
- Wendy N. Jefferson
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Heather B. Patisaul
- Department of Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Carmen J. Williams
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
50
|
Kaludjerovic J, Chen J, Ward WE. Early life exposure to genistein and daidzein disrupts structural development of reproductive organs in female mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:649-660. [PMID: 22712850 DOI: 10.1080/15287394.2012.688482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In mice, exposure to isoflavones (ISO), abundant in soy infant formula, during the first 5 d of life alters structural and functional development of reproductive organs. Effects of longer exposures are unknown. The study objective was to evaluate whether exposure to a combination of daidzein and genistein in the first 10 compared to 5 d of life results in greater adverse effects on ovarian and uterine structure in adult mice. Thirteen litters of 8-12 pups were cross-fostered and randomized to corn oil or ISO (2 mg daidzein + 5 mg genistein/kg body weight/d) for the first 5 or 10 d of life. The 10-d protocol mimicked the period when infants are fed soy protein formula (SPF) but avoids the time when suckling pups can consume mother's diet. Body and organ weights, and histology of ovaries and uteri were analyzed. There were no differences in the ovary or uterus weight, number of ovarian follicles, number of multiple oocyte follicles, or percent of ovarian cysts with 5 or 10 d ISO intervention compared to respective controls. The 10-d ISO group had higher body weights from 6 d to 4 mo of age and a higher percent of hyperplasia in the oviduct than the respective control. Lower number of ovarian corpus lutea and a higher incidence of abnormal changes were reported in the uteri of both ISO groups compared to their respective controls. Five and 10-d exposure to ISO had similar long-lasting adverse effects on the structure of ovaries and uterus in adult mice. Only the 10-d ISO exposure resulted in greater body weight gain at adulthood.
Collapse
Affiliation(s)
- Jovana Kaludjerovic
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|