1
|
Bomfim Bahia PV, Brandão BDRL, Machado ME. Deep eutectic solvent for the extraction of polycyclic aromatic compounds in fuel, food and environmental samples. Talanta 2024; 277:126418. [PMID: 38879948 DOI: 10.1016/j.talanta.2024.126418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Polycyclic aromatic compounds (PACs) encompass a wide variety of organic analytes that have mutagenic and carcinogenic potentials for human health and are recalcitrant in the environment. Evaluating PACs levels in fuel (e.g., gasoline and diesel), food (e.g., grilled meat, fish, powdered milk, fruits, honey, and coffee) and environmental (e.g., industrial effluents, water, wastewater and marine organisms) samples are critical to determine the risk that these chemicals pose. Deep eutectic solvents (DES) have garnered significant attention in recent years as a green alternative to traditional organic solvents employed in sample preparation. DES are biodegradable, have low toxicities, ease of synthesis, low cost, and a remarkable ability to extract PACs. However, no comprehensive assessment of the use of DESs for extracting PACs from fuel, food and environmental samples has been performed. This review focused on research involving the utilization of DESs to extract PACs in matrices such as PAHs in environmental samples, NSO-HET in fuels, and bisphenols in foods. Chromatographic methods, such as gas chromatography (GC) and high-performance liquid chromatography (HPLC), were also revised, considering the sensibility to quantify these compound types. In addition, the characteristics of DES and advantages and limitations for PACs in the context of green analytical chemistry principles (GAC) and green profile based on metrics provide perspective and directions for future development.
Collapse
Affiliation(s)
- Pedro Victor Bomfim Bahia
- Universidade Federal da Bahia, Instituto de Química, Programa de Pós-Graduação em Química, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Beatriz Dos Reis Lago Brandão
- Universidade Federal da Bahia, Instituto de Química, Programa de Pós-Graduação em Química, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Maria Elisabete Machado
- Universidade Federal da Bahia, Instituto de Química, Programa de Pós-Graduação em Química, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil.
| |
Collapse
|
2
|
Guo W, Kwok HC, Griffith SM, Nagl S, Milovanović D, Pavlović M, Pavlović NM, Yu JZ, Dedon PC, Chan W. Combustion-Derived Pollutants Linked with Kidney Disease in Low-Lying Flood-Affected Areas in the Balkans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11301-11308. [PMID: 38900968 DOI: 10.1021/acs.est.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Tens of thousands of people in southern Europe suffer from Balkan endemic nephropathy (BEN), and four times as many are at risk. Incidental ingestion of aristolochic acids (AAs), stemming from the ubiquitousAristolochia clematitis(birthwort) weed in the region, leads to DNA adduct-induced toxicity in kidney cells, the primary cause of BEN. Numerous cofactors, including toxic organics and metals, have been investigated, but all have shown small contributions to the overall BEN relative to non-BEN village distribution gradients. Here, we reveal that combustion-derived pollutants from wood and coal burning in Serbia also contaminate arable soil and test as plausible causative factors of BEN. Using a GC-MS screening method, biomass-burning-derived furfural and coal-burning-derived medium-chain alkanes were detected in soil samples from BEN endemic areas levels at up to 63-times and 14-times higher, respectively, than in nonendemic areas. Significantly higher amounts were also detected in colocated wheat grains. Coexposure studies with cultured kidney cells showed that these pollutants enhance DNA adduct formation by AA, - the cause of AA nephrotoxicity and carcinogenicity. With the coincidence of birthwort-derived AAs and the widespread practice of biomass and coal burning for household cooking and heating purposes and agricultural burning in rural low-lying flood-affected areas in the Balkans, these results implicate combustion-derived pollutants in promoting the development of BEN.
Collapse
Affiliation(s)
- Wanlin Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hong Ching Kwok
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Stephen M Griffith
- Department of Atmospheric Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Stefan Nagl
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Miljana Pavlović
- Department of Anatomy, Faculty of Medicine, University of Niš, Niš 18000, Serbia
| | - Nikola M Pavlović
- Kidneya Therapeutics, Klare Cetkin 11, Belgrade 11070, Serbia
- Center for Multidisciplinary Studies, University of Niš, Niš 18106, Serbia
| | - Jian Zhen Yu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
3
|
Soontornchaiyakul W, Takada K, Kaneko T, Ogawa M. Nanoarchitectonics of a Smectite with 4,4'-Diammonium-α-truxillic Acid and Its Methyl Ester for the Removal of o-Phenylphenol and Biphenyl from Water. Inorg Chem 2024; 63:2787-2792. [PMID: 38266169 DOI: 10.1021/acs.inorgchem.3c04299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Adsorbents with hydrophilic and hydrophobic natures were designed by intercalating a bioderived molecule; 4,4'-diammonium-α-truxillic acid (4ATA) and 4,4'-diammonium-α-truxillic acid dimethyl ester (E4ATA), which both are bioderived molecules, into a smectite (purified bentonite) to concentrate o-phenylphenol and biphenyl, respectively, from water. The adsorption isotherm showed high affinity between the 4ATA-smectite hybrid and o-phenylphenol with a high Langmuir constant (0.98 L mg-1). Meanwhile, the E4ATA-smectite hybrid adsorbed biphenyl with a high Langmuir constant (3.61 L mg-1). The adsorption properties of 4ATA- and E4ATA-smectite hybrid were contributed by the chemical characteristics of 4ATA and E4ATA in the interlayer space of the smectite.
Collapse
Affiliation(s)
- Wasusate Soontornchaiyakul
- School of Energy Science and Engineering (ESE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Kenji Takada
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tatsuo Kaneko
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Makoto Ogawa
- School of Energy Science and Engineering (ESE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
4
|
Shang P, Rong N, Jiang JJ, Cheng J, Zhang MH, Kang D, Qi L, Guo L, Yang GM, Liu Q, Zhou Z, Li XB, Zhu KK, Meng QB, Han X, Yan W, Kong Y, Yang L, Wang X, Lei D, Feng X, Liu X, Yu X, Wang Y, Li Q, Shao ZH, Yang F, Sun JP. Structural and signaling mechanisms of TAAR1 enabled preferential agonist design. Cell 2023; 186:5347-5362.e24. [PMID: 37963465 DOI: 10.1016/j.cell.2023.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/09/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1) senses a spectrum of endogenous amine-containing metabolites (EAMs) to mediate diverse psychological functions and is useful for schizophrenia treatment without the side effects of catalepsy. Here, we systematically profiled the signaling properties of TAAR1 activation and present nine structures of TAAR1-Gs/Gq in complex with EAMs, clinical drugs, and synthetic compounds. These structures not only revealed the primary amine recognition pocket (PARP) harboring the conserved acidic D3.32 for conserved amine recognition and "twin" toggle switch for receptor activation but also elucidated that targeting specific residues in the second binding pocket (SBP) allowed modulation of signaling preference. In addition to traditional drug-induced Gs signaling, Gq activation by EAM or synthetic compounds is beneficial to schizophrenia treatment. Our results provided a structural and signaling framework for molecular recognition by TAAR1, which afforded structural templates and signal clues for TAAR1-targeted candidate compounds design.
Collapse
Affiliation(s)
- Pan Shang
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China
| | - Naikang Rong
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China
| | - Jing-Jing Jiang
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jie Cheng
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China
| | - Ming-Hui Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, China
| | - Lei Qi
- Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China; Biomedical Research Center for Structural Analysis, Shandong University, No.44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Lulu Guo
- Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China
| | - Gong-Ming Yang
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Qun Liu
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China
| | - Zhenzhen Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, China
| | - Xiao-Bing Li
- Medical Science and Technology Innovation Center, Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Kong-Kai Zhu
- Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China
| | - Qing-Biao Meng
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xiang Han
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Wenqi Yan
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yalei Kong
- Songjiang Institute and Shanghai Songjiang District Central Hospital, Center for Brain Science in Shanghai Children's Medical Center, Department of Anatomy and Physiology, Ministry of Education, Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lejin Yang
- Department of Psychology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dapeng Lei
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xin Feng
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, China
| | - Xiao Yu
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yue Wang
- Medical Science and Technology Innovation Center, Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Qian Li
- Songjiang Institute and Shanghai Songjiang District Central Hospital, Center for Brain Science in Shanghai Children's Medical Center, Department of Anatomy and Physiology, Ministry of Education, Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhen-Hua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Fan Yang
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China.
| | - Jin-Peng Sun
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Borghese MM, Huang R, MacPherson S, Gaudreau E, Gagné S, Ashley-Martin J, Fisher M, Booij L, Bouchard MF, Arbuckle TE. A descriptive analysis of first trimester urinary concentrations of 14 bisphenol analogues in the MIREC Canadian pregnancy cohort. Int J Hyg Environ Health 2023; 253:114225. [PMID: 37542835 DOI: 10.1016/j.ijheh.2023.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Concern over the health effects of BPA, particularly for the developing fetus, has led to an increasing use of bisphenol analogues in industrial and consumer products, which may be as hormonally active as BPA. Biomonitoring data for many bisphenol analogues, especially in pregnant populations, are limited. METHODS We measured concentrations of 14 bisphenol analogues in 1st trimester urine samples (n = 1851) from the Maternal-Infant Research on Environmental Chemicals (MIREC) Canadian pregnancy cohort (2008-2011). We examined patterns of exposure according to sociodemographic and sampling characteristics as well as occupation and frequency of consumption of canned fish within the previous 3 months. RESULTS BPA was detected in 89% of participants with a specific gravity standardized geometric mean concentration of 0.990 μg/L. Biphenol 4,4' (BP 4,4'), 4,4'-dihydroxydiphenyl ether (DHDPE), and bisphenol E (BPE) were detected in >97% of participants. Bisphenol F (BPF) and bisphenol S (BPS) were detected in >60% of participants. Specific gravity standardized geometric mean concentrations of these 5 compounds ranged from 0.024 to 0.564 μg/L. Nine bisphenol analogues were detected in <9% of participants. Concentrations of BP 4,4', DHDPE, and BPE were higher in younger women and those with higher pre-pregnancy BMI, lower household income, lower education, and among smokers. We found a similar pattern of differences in BPF for age, education, and smoking status while BPS similarly differed across categories of pre-pregnancy BMI. Participants who were unemployed or working in the service industry had higher molar sum of 7 bisphenol analogues than those working in healthcare, education, or an office setting. Canned fish consumption was not related to bisphenol analogue concentrations. CONCLUSION BP 4,4', DHDPE, BPE, BPF, and BPS were highly detected in 1st trimester urine samples in this large pan-Canadian pregnancy cohort. This suggests widespread exposure to these analogues around 2008-2011 and warrants further investigation into associations with health outcomes.
Collapse
Affiliation(s)
- M M Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - R Huang
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - S MacPherson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - E Gaudreau
- Centre du Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Quebec, Canada.
| | - S Gagné
- Centre du Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Quebec, Canada.
| | - J Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - M Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - L Booij
- Department of Psychiatry, McGill University, Montréal, Québec, Canada; Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada; Department of Environmental and Occupational Health, School of Public Health of the University of Montreal, Montréal, Québec, Canada.
| | - M F Bouchard
- Department of Environmental and Occupational Health, School of Public Health of the University of Montreal, Montréal, Québec, Canada.
| | - T E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Zhao KX, Zhang MY, Yang D, Zhu RS, Zhang ZF, Hu YH, Kannan K. Screening of pesticides in serum, urine and cerebrospinal fluid collected from an urban population in China. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131002. [PMID: 36801718 DOI: 10.1016/j.jhazmat.2023.131002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Human exposure to pesticides is a topic of public health concern for decades. Pesticide exposures have been assessed through the analysis of urine or blood matrices, but little is known on the accumulation of these chemicals in cerebrospinal fluid (CSF). CSF plays an important role in maintaining physical and chemical balance of the brain and central nervous system and any perturbation can have adverse effects on health. In this study, we investigated the occurrence of 222 pesticides in CSF from 91 individuals using gas chromatography-tandem mass spectrometry (GC-MS/MS). Measured pesticide concentrations in CSF were compared with those in 100 serum and urine specimens from individuals living in the same urban location. Twenty pesticides were found in CSF, serum and urine, at levels above the limit of detection. Three most frequently detected pesticides in CSF were biphenyl (100%), diphenylamine (75%), and hexachlorobenzene (63%). Median concentrations of biphenyl in CSF, serum and urine were 1.11, 10.6, and 1.10 ng/mL, respectively. Six triazole fungicides were found only in CSF, but not in other matrices. To our knowledge, this is the first study to report pesticide concentrations in CSF in a general urban population.
Collapse
Affiliation(s)
- Ke-Xin Zhao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Ming-Yan Zhang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Dan Yang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Rong-Shu Zhu
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China.
| | - Ying-Hua Hu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin 150028, China
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
7
|
Yang R, Liu S, Yin N, Zhang Y, Faiola F. Tox21-Based Comparative Analyses for the Identification of Potential Toxic Effects of Environmental Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14668-14679. [PMID: 36178254 DOI: 10.1021/acs.est.2c04467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemical pollution has become a prominent environmental problem. In recent years, quantitative high-throughput screening (qHTS) assays have been developed for the fast assessment of chemicals' toxic effects. Toxicology in the 21st Century (Tox21) is a well-known and continuously developing qHTS project. Recent reports utilizing Tox21 data have mainly focused on setting up mathematical models for in vivo toxicity predictions, with less attention to intuitive qHTS data visualization. In this study, we attempted to reveal and summarize the toxic effects of environmental pollutants by analyzing and visualizing Tox21 qHTS data. Via PubMed text mining, toxicity/structure clustering, and manual classification, we detected a total of 158 chemicals of environmental concern (COECs) from the Tox21 library that we classified into 13 COEC groups based on structure and activity similarities. By visualizing these COEC groups' bioactivities, we demonstrated that COECs frequently displayed androgen and progesterone antagonistic effects, xenobiotic receptor agonistic roles, and mitochondrial toxicity. We also revealed many other potential targets of the 13 COEC groups, which were not well illustrated yet, and that current Tox21 assays may not correctly classify known teratogens. In conclusion, we provide a feasible method to intuitively understand qHTS data.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, U.K
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zhang CY, Li X, Flor S, Ruiz P, Kruve A, Ludewig G, Lehmler HJ. Metabolism of 3-Chlorobiphenyl (PCB 2) in a Human-Relevant Cell Line: Evidence of Dechlorinated Metabolites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12460-12472. [PMID: 35994059 PMCID: PMC9573771 DOI: 10.1021/acs.est.2c03687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Lower chlorinated polychlorinated biphenyls (LC-PCBs) and their metabolites make up a class of environmental pollutants implicated in a range of adverse outcomes in humans; however, the metabolism of LC-PCBs in human models has received little attention. Here we characterize the metabolism of PCB 2 (3-chlorobiphenyl), an environmentally relevant LC-PCB congener, in HepG2 cells with in silico prediction and nontarget high-resolution mass spectrometry. Twenty PCB 2 metabolites belonging to 13 metabolite classes, including five dechlorinated metabolite classes, were identified in the cell culture media from HepG2 cells exposed for 24 h to 10 μM or 3.6 nM PCB 2. The PCB 2 metabolite profiles differed from the monochlorinated metabolite profiles identified in samples from an earlier study with PCB 11 (3,3'-dichlorobiphenyl) under identical experimental conditions. A dechlorinated dihydroxylated metabolite was also detected in human liver microsomal incubations with monohydroxylated PCB 2 metabolites but not PCB 2. These findings demonstrate that the metabolism of LC-PCBs in human-relevant models involves the formation of dechlorination products. In addition, untargeted metabolomic analyses revealed an altered bile acid biosynthesis in HepG2 cells. Our results indicate the need to study the disposition and toxicity of complex PCB 2 metabolites, including novel dechlorinated metabolites, in human-relevant models.
Collapse
Affiliation(s)
- Chun-Yun Zhang
- Hubei
Key Laboratory of Regional Development and Environmental Response,
Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Xueshu Li
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Susanne Flor
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Patricia Ruiz
- Office
of Innovation and Analytics, Simulation Science Section, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia 30333, United States
| | - Anneli Kruve
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 10691 Stockholm, Sweden
| | - Gabriele Ludewig
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
- Phone: (319) 335-4981. Fax: (319) 335-4290.
| |
Collapse
|
9
|
Simultaneous determination of pesticides and their degradation products in potatoes by MSPD-LC-MS/MS. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
A poplar short-chain dehydrogenase reductase plays a potential key role in biphenyl detoxification. Proc Natl Acad Sci U S A 2021; 118:2103378118. [PMID: 34446553 PMCID: PMC8536390 DOI: 10.1073/pnas.2103378118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Persistent organic pollutants (POPs), including polychlorinated biphenyls, represent a major environmental threat. Besides affecting human health, they negatively affect food security, pest and disease spread, carbon sequestration, biodiversity, and the resilience of ecosystems. Plant-based remediation offers important advantages over conventional remediation. However, limited knowledge of POP metabolism in planta can delay the application of molecular tools to genetically improve cleanup efficiency. By integrating functional and structural studies, we define here a plant-specific pathway which is activated by and possibly contributes to detoxifying biphenyl-derived toxicants. This pathway exhibits common features with bacterial biphenyl/PCB degradation but also significant differences. Our results open avenues to improve the success of phytoremediation technologies. Polychlorinated biphenyls (PCBs) are persistent organic pollutants with severe effects on human health and the biosphere. Plant-based remediation offers many benefits over conventional PCB remediation, but its development has been hampered by our poor understanding of biphenyl metabolism in eukaryotes, among other factors. We report here a major PCB-responsive protein in poplar, a plant model system capable of PCB uptake and translocation. We provide structural and functional evidence that this uncharacterized protein, termed SDR57C, belongs to the heterogeneous short-chain dehydrogenase reductase (SDR) superfamily. Despite sequence divergence, structural modeling hinted at structural and functional similarities between SDR57C and BphB, a central component of the Bph pathway for biphenyl/PCB degradation in aerobic bacteria. By combining gas chromatography/mass spectrometry (GC/MS) profiling with a functional complementation scheme, we found that poplar SDR57C can replace BphB activity in the upper Bph pathway of Pseudomonas furukawaii KF707 and therefore catalyze the oxidation of 2,3-dihydro-2,3-dihydroxybiphenyl (2,3-DHDB) to 2,3-dihydroxybiphenyl (2,3-DHB). Consistent with this biochemical activity, we propose a mechanism of action based on prior quantum studies, general properties of SDR enzymes, and the modeled docking of 2,3-DHDB to the SDR57C-NAD+ complex. The putative detoxifying capacity of SDR57C was substantiated through reverse genetics in Arabidopsis thaliana. Phenotypic characterization of the SDR lines underscored an inducible plant pathway with the potential to catabolize toxic biphenyl derivatives. Partial similarities with aerobic bacterial degradation notwithstanding, real-time messenger RNA quantification indicates the occurrence of plant-specific enzymes and features. Our results may help explain differences in degradative abilities among plant genotypes and also provide elements to improve them.
Collapse
|
11
|
Lu T, Reimonn G, Morose G, Yu E, Chen WT. Removing Acrylic Conformal Coating with Safer Solvents for Re-Manufacturing Electronics. Polymers (Basel) 2021; 13:937. [PMID: 33803712 PMCID: PMC8002995 DOI: 10.3390/polym13060937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 11/30/2022] Open
Abstract
Conformal coating is typically composed of polymeric film and is used to protect delicate electronic components such as printed-circuit boards. Without removing conformal coating, it would be difficult to repair these complicated electronics. Methylene chloride, also called dichloromethane (DCM), has a widespread usage in conformal coating stripper products. The high toxicity of DCM increases human health risk when workers are exposed to DCM during the conformal coating removal processes. Therefore, the replacement of DCM would be beneficial to greatly improve the overall safety profile for workers in the electronics and coating industries. This research identified and evaluated alternative chemicals for replacing DCM used in acrylic conformal coating stripping operations. The solubility of an acrylic conformal coating was measured and characterized using Hansen solubility parameters (HSP) theory. Coating dwell time tests using various solvent blends verified the accuracy of the created HSP solubility sphere. A data processing method was also developed to identify and screen potential alternative solvent blends in terms of safety, toxicity, and cost-effectiveness. The identified safer solvent blends were demonstrated to provide equivalent stripping performance as compared to DCM based coating strippers within an acceptable cost range. The results of this research will be of value to other types of conformal coatings, such as silicone and polyurethane, where DCM is commonly used in similar coating stripping operations. By safely removing conformal coating, delicate electronics would be available for re-manufacturing, enabling a circular economy.
Collapse
Affiliation(s)
- Taofeng Lu
- Department of Plastics Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Gregory Reimonn
- Department of Plastics Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Gregory Morose
- Toxics Use Reduction Institute, University of Massachusetts Lowell, Lowell, MA 01852, USA
| | - Evan Yu
- Department of Plastics Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Wan-Ting Chen
- Department of Plastics Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
12
|
Minamiyama Y, Takemura S, Ichikawa H. Food additive-induced oxidative stress in rat male reproductive organs and hippocampus. Arch Biochem Biophys 2021; 701:108810. [PMID: 33600787 DOI: 10.1016/j.abb.2021.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
As currently defined, the exposome represents the lifetime exposure measure of an individual to all potential external genetic influences and their impact on health. Although intentionally added chemicals (e.g., food additives) and food contact materials (e.g., packaging, pesticides) have been assessed for safety to some degree, the full extent to which they can affect health and reproduction has not been reported. The aim of this study was to determine the in vitro and in vivo effects of food additives on the male rat brain and sperm/testes, particularly through oxidative stress. Results from our in vitro study demonstrated that the administration of the common food additive, stevioside, a major component of the common sweetener stevia, as well as the preservatives, diphenyl and orthophenyl phenol (OPP), induced reactive oxygen species (ROS) production in sperm, and led to sperm dysfunction. These effects were inhibited by the addition of the antioxidant α-tocopherol. Moreover, OPP treatment (1/10,000 of no observed adverse effect) induced ROS production in sperm and lipid peroxidation in the epididymis and hippocampus after two weeks in vivo. Furthermore, 4-hydroxynonenal-positive cells, indicating ROS-generated protein modifications, were detected in spermatocytes in the testes and granular cell layer of the dentate gyrus in the brain. Treatment with α-tocopherol significantly improved oxidative stress. Our study suggests that certain food additives may affect sperm function and induce oxidative stress in the testes and brain, resulting in infertility and short-term memory loss, and some antioxidants may improve these dysfunctions.
Collapse
Affiliation(s)
- Yukiko Minamiyama
- Food Hygiene and Environmental Health Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| | - Shigekazu Takemura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiroshi Ichikawa
- Department of Medical System Protective Health and Medicine Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
13
|
Delgado JL, Lentz SRC, Kulkarni CA, Chheda PR, Held HA, Hiasa H, Kerns RJ. Probing structural requirements for human topoisomerase I inhibition by a novel N1-Biphenyl fluoroquinolone. Eur J Med Chem 2019; 172:109-130. [PMID: 30959322 DOI: 10.1016/j.ejmech.2019.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 11/28/2022]
Abstract
Fluoroquinolones substituted with N-1 biphenyl and napthyl groups were discovered to act as catalytically inhibitors of human topoisomerases I and II, and to possess anti-proliferative activity in vivo. Structural requirements for these novel quinolones to inhibit catalytic activity of human topoisomerase I have not been explored. In this work novel derivatives of the N-1 biphenyl fluoroquinolone were designed, synthesized and evaluated to understand structural requirements of the C-3 carboxylic acid, C-6 fluorine, C-7 aminomethylpyrrolidine, C-8 methoxy, and the N-1 biphenyl functional groups for hTopoI inhibition. Characterization of each analog for inhibition of hTopoI catalytic inhibition reveals critical insight into structural requirements of these novel quinolones for activity. Additionally, results of DNA binding and modeling studies suggest that N-1 biphenyl fluoroquinolones intercalate between the DNA base pairs with the N-1 biphenyl functional group, rather than the quinolone core, and that this mode of DNA intercalation contributes to inhibition of hTopoI by these novel structures. The results presented here support further development and evaluation of N-1 biphenyl fluoroquinolone analogs as a novel class of anti-cancer agents that act through catalytic inhibition of hTopoI.
Collapse
Affiliation(s)
- Justine L Delgado
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA, 52242, USA
| | - Sarah R C Lentz
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Chaitanya A Kulkarni
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA, 52242, USA
| | - Pratik R Chheda
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA, 52242, USA
| | - Hailey A Held
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Hiroshi Hiasa
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Robert J Kerns
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
14
|
Ae M, Imura N, Inubushi T, Abe S, Yusuke B, Sugimoto M, Kamemura N. Biphenyl-induced cytotoxicity is mediated by an increase in intracellular Zn 2. Drug Chem Toxicol 2018; 42:430-435. [PMID: 30203682 DOI: 10.1080/01480545.2018.1499771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Biphenyl is found both in natural and anthropogenic sources and is used as a fungistat in the packaging of citrus fruits. Acute exposure to high levels of biphenyl has been observed to cause skin irritation and toxic effects on the liver and kidneys. However, the mechanisms of cytotoxicity induced by biphenyl are not yet well understood. In the present study, the cytotoxicity of biphenyl was studied by flow cytometry with fluorescent probes. Biphenyl at 100 μM significantly increased cell lethality after 3 h in rat thymocytes. In addition, biphenyl at 100 μM or more elevated intracellular Zn2+ levels. N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), an intracellular and extracellular Zn2+ chelator, but not diethylenetriamine-N,N,N',N″,N″-pentaacetic acid (DTPA), a membrane-impermeable Zn2+ chelator, attenuated the biphenyl-induced increase in intracellular Zn2+ levels and cell death. These results suggested that biphenyl-induced cytotoxicity caused an increase in intracellular Zn2+ levels, which was dependent on internal Zn2+. Moreover, biphenyl led to an increase in sensitivity to oxidative stress, while TPEN inhibited this biphenyl-induced increase. Our findings revealed that biphenyl caused an increase in the intracellular free Zn2+ concentration, inducing cytotoxicity, cell death, and an increase in sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Masamichi Ae
- a a Division of Bioscience and Bioindustry , Tokushima University , Tokushima , Japan
| | - Naohiro Imura
- a a Division of Bioscience and Bioindustry , Tokushima University , Tokushima , Japan
| | - Tomoko Inubushi
- b Faculty of Life Science , Tokushima Bunri University , Tokushima , Japan
| | - Shin Abe
- a a Division of Bioscience and Bioindustry , Tokushima University , Tokushima , Japan
| | - Bekki Yusuke
- c Faculty of Medicine , Tokushima University , Tokushima , Japan
| | - Mayumi Sugimoto
- d Institute of Biomedical Sciences , Tokushima University Graduate School , Tokushima , Japan
| | - Norio Kamemura
- a a Division of Bioscience and Bioindustry , Tokushima University , Tokushima , Japan
| |
Collapse
|