1
|
Olech M. Conventional and State-of-the-Art Detection Methods of Bovine Spongiform Encephalopathy (BSE). Int J Mol Sci 2023; 24:ijms24087135. [PMID: 37108297 PMCID: PMC10139118 DOI: 10.3390/ijms24087135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease that belongs to a group of diseases known as transmissible spongiform encephalopathies (TSEs). It is believed that the infectious agent responsible for prion diseases is abnormally folded prion protein (PrPSc), which derives from a normal cellular protein (PrPC), which is a cell surface glycoprotein predominantly expressed in neurons. There are three different types of BSE, the classical BSE (C-type) strain and two atypical strains (H-type and L-type). BSE is primarily a disease of cattle; however, sheep and goats also can be infected with BSE strains and develop a disease clinically and pathogenically indistinguishable from scrapie. Therefore, TSE cases in cattle and small ruminants require discriminatory testing to determine whether the TSE is BSE or scrapie and to discriminate classical BSE from the atypical H- or L-type strains. Many methods have been developed for the detection of BSE and have been reported in numerous studies. Detection of BSE is mainly based on the identification of characteristic lesions or detection of the PrPSc in the brain, often by use of their partial proteinase K resistance properties. The objective of this paper was to summarize the currently available methods, highlight their diagnostic performance, and emphasize the advantages and drawbacks of the application of individual tests.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
2
|
MATSUURA Y, MIYAZAWA K, IMAMURA M, YOKOYAMA T, IWAMARU Y. First case of atypical scrapie in a goat in Japan. J Vet Med Sci 2019; 81:986-989. [PMID: 31092762 PMCID: PMC6656802 DOI: 10.1292/jvms.18-0710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/05/2019] [Indexed: 11/22/2022] Open
Abstract
Atypical scrapie in goats has only been reported in European countries. The present study reports the identification of the first case of atypical scrapie in goats in Japan. The genotype of the animal was ALRQ/ALHQ at codons 136, 141, 154, and 171 in prion protein (PrP). Western blot analysis showed a multiplex proteinase K-resistant prion protein (PrP-res) band pattern with a band <15 kDa that was clearly distinguishable from the triplet PrP-res band pattern observed in classical scrapie cases. Histopathological and immunohistological examination showed mild vacuolation and fine granular to globular immunolabelling of disease-associated PrP in the dorsal horn of cervical spinal cord. Collectively, our results confirmed that this goat was affected by atypical scrapie.
Collapse
Affiliation(s)
- Yuichi MATSUURA
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Kohtaro MIYAZAWA
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Morikazu IMAMURA
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, Miyazaki University, Miyazaki 889-1692, Japan
| | - Takashi YOKOYAMA
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Yoshifumi IWAMARU
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
3
|
Kumagai S, Daikai T, Onodera T. Bovine Spongiform Encephalopathy
- A Review from the Perspective of Food Safety. Food Saf (Tokyo) 2019; 7:21-47. [PMID: 31998585 PMCID: PMC6978881 DOI: 10.14252/foodsafetyfscj.2018009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/01/2019] [Indexed: 12/04/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease that belongs to transmissible spongiform encephalopathy (TSE). Since the first case was identified in the UK in 1986, BSE spread to other countries including Japan. Its incidence peaked in 1992 in the UK and from 2001 to 2006 in many other countries, but a feed ban aimed at eliminating the recycling of the BSE agent and other control measures aimed at preventing food and feed contamination with the agent were highly effective at reducing the spread of BSE. In 2004, two types of atypical BSE, H-type BSE (H-BSE) and L-type BSE (L-BSE), which differ from classical BSE (C-BSE), were found in France and Italy. Atypical BSE, which is assumed to occur spontaneously, has also been detected among cattle in other countries including Japan. The BSE agent including atypical BSE agent is a unique food-safety hazard with different chemical and biological properties from the microbial pathogens and toxic chemicals that contaminate food. In this review, we summarize the reported findings on the tissue distribution of BSE prions in infected cattle and other aspects of BSE, as well as the control measures against the disease employed in Japan. Topics that require further studies are discussed based on the summarized findings from the perspective of food safety.
Collapse
Affiliation(s)
- Susumu Kumagai
- Research Center for Food Safety, The University of
Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657,
Japan
| | - Takateru Daikai
- Food Safety Commission of Japan Secretariat, Akasaka
Park Bld. 22F, Akasaka 5-2-20, Minato-ku,
Tokyo 107-6122, Japan
- Cooperative Department of Veterinary Medicine,
Graduate School of Veterinary Sciences, Iwate University, Morioka-shi,
Iwate 020-8550, Japan
| | - Takashi Onodera
- Research Center for Food Safety, The University of
Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657,
Japan
| |
Collapse
|
4
|
Protocol for further laboratory investigations into the distribution of infectivity of Atypical BSE. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
5
|
|
6
|
Consideration of Risk Variations in Japan Derived from the Proposed Revisions of the Current Countermeasures against BSE. Food Saf (Tokyo) 2014. [DOI: 10.14252/foodsafetyfscj.2014019f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Fast C, Keller M, Balkema-Buschmann A, Hills B, Groschup MH. Complementary studies detecting classical bovine spongiform encephalopathy infectivity in jejunum, ileum and ileocaecal junction in incubating cattle. Vet Res 2013; 44:123. [PMID: 24359408 PMCID: PMC3890602 DOI: 10.1186/1297-9716-44-123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/05/2013] [Indexed: 11/10/2022] Open
Abstract
Recently we have described the distribution of bovine spongiform encephalopathy (BSE) infectivity and/or PrPSc in Peyer's patches (PP) of the small intestine of orally BSE infected cattle. In this follow-up study additional jejunal and ileal PP's and ileocaecal-junction tissue samples from 1, 4, and 24 months post infection (mpi) were examined by mouse (Tgbov XV) bioassay. Infectivity was demonstrated in ileal PP's 4 mpi and the distribution/extent of infectivity at 24 mpi was comparable to those seen at earlier time points, revealing no indication for a decline/clearance. These data are relevant for the definition of Specified Risk Materials in the context of the TSE legislation worldwide.
Collapse
Affiliation(s)
| | | | | | | | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
8
|
Suardi S, Vimercati C, Casalone C, Gelmetti D, Corona C, Iulini B, Mazza M, Lombardi G, Moda F, Ruggerone M, Campagnani I, Piccoli E, Catania M, Groschup MH, Balkema-Buschmann A, Caramelli M, Monaco S, Zanusso G, Tagliavini F. Infectivity in skeletal muscle of cattle with atypical bovine spongiform encephalopathy. PLoS One 2012; 7:e31449. [PMID: 22363650 PMCID: PMC3283643 DOI: 10.1371/journal.pone.0031449] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/08/2012] [Indexed: 11/19/2022] Open
Abstract
The amyloidotic form of bovine spongiform encephalopathy (BSE) termed BASE is caused by a prion strain whose biological properties differ from those of typical BSE, resulting in a clinically and pathologically distinct phenotype. Whether peripheral tissues of BASE-affected cattle contain infectivity is unknown. This is a critical issue since the BASE prion is readily transmissible to a variety of hosts including primates, suggesting that humans may be susceptible. We carried out bioassays in transgenic mice overexpressing bovine PrP (Tgbov XV) and found infectivity in a variety of skeletal muscles from cattle with natural and experimental BASE. Noteworthy, all BASE muscles used for inoculation transmitted disease, although the attack rate differed between experimental and natural cases (∼70% versus ∼10%, respectively). This difference was likely related to different prion titers, possibly due to different stages of disease in the two conditions, i.e. terminal stage in experimental BASE and pre-symptomatic stage in natural BASE. The neuropathological phenotype and PrPres type were consistent in all affected mice and matched those of Tgbov XV mice infected with brain homogenate from natural BASE. The immunohistochemical analysis of skeletal muscles from cattle with natural and experimental BASE showed the presence of abnormal prion protein deposits within muscle fibers. Conversely, Tgbov XV mice challenged with lymphoid tissue and kidney from natural and experimental BASE did not develop disease. The novel information on the neuromuscular tropism of the BASE strain, efficiently overcoming species barriers, underlines the relevance of maintaining an active surveillance.
Collapse
Affiliation(s)
- Silvia Suardi
- Instituto Di Ricoveroe Cura a Carattere Scientifico (IRCCS), Foundation “Carlo Besta” Neurological Institute, Milano, Italy
| | - Chiara Vimercati
- Instituto Di Ricoveroe Cura a Carattere Scientifico (IRCCS), Foundation “Carlo Besta” Neurological Institute, Milano, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Daniela Gelmetti
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - Cristiano Corona
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Barbara Iulini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Maria Mazza
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Guerino Lombardi
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - Fabio Moda
- Instituto Di Ricoveroe Cura a Carattere Scientifico (IRCCS), Foundation “Carlo Besta” Neurological Institute, Milano, Italy
| | - Margherita Ruggerone
- Instituto Di Ricoveroe Cura a Carattere Scientifico (IRCCS), Foundation “Carlo Besta” Neurological Institute, Milano, Italy
| | - Ilaria Campagnani
- Instituto Di Ricoveroe Cura a Carattere Scientifico (IRCCS), Foundation “Carlo Besta” Neurological Institute, Milano, Italy
| | - Elena Piccoli
- Instituto Di Ricoveroe Cura a Carattere Scientifico (IRCCS), Foundation “Carlo Besta” Neurological Institute, Milano, Italy
| | - Marcella Catania
- Instituto Di Ricoveroe Cura a Carattere Scientifico (IRCCS), Foundation “Carlo Besta” Neurological Institute, Milano, Italy
| | | | | | - Maria Caramelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | | | | | - Fabrizio Tagliavini
- Instituto Di Ricoveroe Cura a Carattere Scientifico (IRCCS), Foundation “Carlo Besta” Neurological Institute, Milano, Italy
- * E-mail:
| |
Collapse
|
9
|
Okada H, Iwamaru Y, Fukuda S, Yokoyama T, Mohri S. Detection of disease-associated prion protein in the optic nerve and the adrenal gland of cattle with bovine spongiform encephalopathy by using highly sensitive immunolabeling procedures. J Histochem Cytochem 2012; 60:290-300. [PMID: 22260993 DOI: 10.1369/0022155412437218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A sensitive immunohistochemical procedure, the tyramide signal amplification (TSA) system, was applied to detect the localization of immunolabeled disease-associated prion protein (PrP(Sc)) in cattle affected with bovine spongiform encephalopathy (BSE). In this procedure, immunolabeling could be visualized in the optic nerve and the adrenal medulla. In the optic nerve, the dual immunofluorescent technique showed that the granular PrP(Sc) was occasionally detected in the astrocytes, microglia, and myelin sheath adjacent to the axon. Clustered PrP(Sc) was also scattered in association with microglial cells and astrocytes of the optic nerve. In the adrenal gland, PrP(Sc) immunolabeling was confined within the sympathetic nerve fibers and endings. The results suggest that (1) PrP(Sc) might centrifugally spread within and between glial cells and/or the non-axonal (also known as ad-axonal) region of nerve fibers, rather than the axonal and/or extracellular space pathway in the optic nerve, and (2) the sympathetic innervations might be important for the trafficking of BSE agent in the adrenal glands of cattle. This study also suggests that tyramide-based immunochemical analysis should be performed to detect immunolabeled PrP(Sc) in the extracerebral tissues of BSE-affected cattle.
Collapse
Affiliation(s)
- Hiroyuki Okada
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
10
|
Scientific Opinion on a review of the BSE‐related risk in bovine intestines. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
11
|
Okada H, Iwamaru Y, Imamura M, Masujin K, Matsuura Y, Murayama Y, Mohri S, Yokoyama T. Detection of disease-associated prion protein in the posterior portion of the small intestine involving the continuous Peyer's patch in cattle orally infected with bovine spongiform encephalopathy agent. Transbound Emerg Dis 2011; 58:333-43. [PMID: 21320296 DOI: 10.1111/j.1865-1682.2011.01208.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Twenty-eight calves were exposed to 5 g of homogenized brainstems confirmed as bovine spongiform encephalopathy (BSE) agents. Two to five animals were sequentially killed for post-mortem analyses 20 months post-inoculation (MPI) at intervals of 6 or 12 months. Samples from animals challenged orally with BSE agents were examined by Western blot and immunohistochemical analyses. Immunolabelled, disease-associated prion protein (PrPsc) was detected in a small portion of follicles in the continuous Peyer's patch from the posterior portion of the small intestine involving the entire ileum and the posterior jejunum but not in the discrete Peyer's patches in the remaining jejunum in preclinical animals at 20, 36, and 48 MPI. The PrPsc-positive cells corresponded to tingible body macrophages on double immunofluorescence labelling. In addition, PrPsc accumulated in 7 of 14 animals in the central nervous system (CNS) after 34 MPI, and five of them developed clinical signs and were killed at 34, 46, 58, and 66 MPI. Two preclinical animals killed at 36 and 48 MPI presented the earliest detectable and smallest deposition of immunolabelled PrPsc in the dorsal motor nucleus of the vagus nerve, the spinal trigeminal nucleus of the medulla oblongata at the obex region, and/or the intermediolateral nucleus of the 13th thoracic segment of the spinal cord. Based on serial killing, no PrPsc was detectable in the CNS, including the medulla oblongata at the obex level, before 30 MPI, by Western blot and immunohistochemical analyses. These results are important for understanding the pathogenesis of BSE.
Collapse
Affiliation(s)
- H Okada
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|