1
|
Jermakow N, Skarżyńska W, Lewandowska K, Kiernozek E, Goździk K, Mietelska-Porowska A, Drela N, Wojda U, Doligalska M. Modulation of LPS-Induced Neurodegeneration by Intestinal Helminth Infection in Ageing Mice. Int J Mol Sci 2023; 24:13994. [PMID: 37762297 PMCID: PMC10530578 DOI: 10.3390/ijms241813994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Parasitic helminths induce a transient, short-term inflammation at the beginning of infection, but in persistent infection may suppress the systemic immune response by enhancing the activity of regulatory M2 macrophages. The aim of the study was to determine how nematode infection affects age-related neuroinflammation, especially macrophages in the nervous tissue. Here, intraperitoneal LPS-induced systemic inflammation resulting in brain neurodegeneration was enhanced by prolonged Heligmosomoides polygyrus infection in C57BL/6 mice. The changes in the brain coincided with the increase in M1 macrophages, reduced survivin level, enhanced APP and GFAP expression, chitin-like chains deposition in the brain and deterioration behaviour manifestations. These changes were also observed in transgenic C57BL/6 mice predisposed to develop neurodegeneration typical for Alzheimer's disease in response to pathogenic stimuli. Interestingly, in mice infected with the nematode only, the greater M2 macrophage population resulted in better results in the forced swim test. Given the growing burden of neurodegenerative diseases, understanding such interactive associations can have significant implications for ageing health strategies and disease monitoring.
Collapse
Affiliation(s)
- Natalia Jermakow
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland; (N.J.); (W.S.); (E.K.); (K.G.); (N.D.)
| | - Weronika Skarżyńska
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland; (N.J.); (W.S.); (E.K.); (K.G.); (N.D.)
| | - Katarzyna Lewandowska
- Faculty of Chemistry, Nicolaus Copernicus in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Ewelina Kiernozek
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland; (N.J.); (W.S.); (E.K.); (K.G.); (N.D.)
| | - Katarzyna Goździk
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland; (N.J.); (W.S.); (E.K.); (K.G.); (N.D.)
| | - Anna Mietelska-Porowska
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Ludwika Pasteura 3, 02-093 Warszawa, Poland; (A.M.-P.); (U.W.)
| | - Nadzieja Drela
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland; (N.J.); (W.S.); (E.K.); (K.G.); (N.D.)
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Ludwika Pasteura 3, 02-093 Warszawa, Poland; (A.M.-P.); (U.W.)
| | - Maria Doligalska
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland; (N.J.); (W.S.); (E.K.); (K.G.); (N.D.)
| |
Collapse
|
2
|
Hussain T, Nguyen A, Daunt C, Thiele D, Pang ES, Li J, Zaini A, O'Keeffe M, Zaph C, Harris NL, Quinn KM, La Gruta NL. Helminth Infection-Induced Increase in Virtual Memory CD8 T Cells Is Transient, Driven by IL-15, and Absent in Aged Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:297-309. [PMID: 36524995 DOI: 10.4049/jimmunol.2200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023]
Abstract
CD8 virtual memory T (TVM) cells are Ag-naive CD8 T cells that have undergone partial differentiation in response to common γ-chain cytokines, particularly IL-15 and IL-4. TVM cells from young individuals are highly proliferative in response to TCR and cytokine stimulation but, with age, they lose TCR-mediated proliferative capacity and exhibit hallmarks of senescence. Helminth infection can drive an increase in TVM cells, which is associated with improved pathogen clearance during subsequent infectious challenge in young mice. Given the cytokine-dependent profile of TVM cells and their age-associated dysfunction, we traced proliferative and functional changes in TVM cells, compared with true naive CD8 T cells, after helminth infection of young and aged C57BL/6 mice. We show that IL-15 is essential for the helminth-induced increase in TVM cells, which is driven only by proliferation of existing TVM cells, with negligible contribution from true naive cell differentiation. Additionally, TVM cells showed the greatest proliferation in response to helminth infection and IL-15 compared with other CD8 T cells. Furthermore, TVM cells from aged mice did not undergo expansion after helminth infection due to both TVM cell-intrinsic and -extrinsic changes associated with aging.
Collapse
Affiliation(s)
- Tabinda Hussain
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Angela Nguyen
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Carmel Daunt
- Laboratory of Intestinal Immunology, Department of Immunology and Pathology, Central Clinical School, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Daniel Thiele
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ee Shan Pang
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jasmine Li
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia; and
| | - Aidil Zaini
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Meredith O'Keeffe
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Colby Zaph
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Nicola L Harris
- Laboratory of Intestinal Immunology, Department of Immunology and Pathology, Central Clinical School, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Kylie M Quinn
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Age-dependent rise in IFN-γ competence undermines effective type 2 responses to nematode infection. Mucosal Immunol 2022; 15:1270-1282. [PMID: 35690651 PMCID: PMC9705248 DOI: 10.1038/s41385-022-00519-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
The efficient induction of type 2 immune responses is central to the control of helminth infections. Previous studies demonstrated that strong Th1 responses driven by intracellular pathogens as well as a bias for type 1 activity in senescent mice impedes the generation of Th2 responses and the control of intestinal nematode infections. Here, we show that the spontaneous differentiation of Th1 cells and their expansion with age restrains type 2 immunity to infection with the small intestinal nematode H. polygyrus much earlier in life than previously anticipated. This includes the more extensive induction of IFN-γ competent, nematode-specific Th2/1 hybrid cells in BALB/c mice older than three months compared to younger animals. In C57BL/6 mice, Th1 cells accumulate more rapidly at steady state, translating to elevated Th2/1 differentiation and poor control of parasite fitness in primary infections experienced at a young age. Blocking of early IFN-γ and IL-12 signals during the first week of nematode infection leads to sharply decreased Th2/1 differentiation and promotes resistance in both mouse lines. Together, these data suggest that IFN-γ competent, type 1 like effector cells spontaneously accumulating in the vertebrate host progressively curtail the effectiveness of anti-nematode type 2 responses with rising host age.
Collapse
|
4
|
Moretto J, Girard C, Demougeot C. The role of arginase in aging: A systematic review. Exp Gerontol 2019; 116:54-73. [DOI: 10.1016/j.exger.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
|
5
|
Corilagin ameliorates schistosomiasis hepatic fibrosis through regulating IL-13 associated signal pathway in vitro and in vivo. Parasitology 2016; 143:1629-38. [DOI: 10.1017/s0031182016001128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SUMMARYInterleukin (IL)-13-associated signal pathway plays an important role in schistosomiasis hepatic fibrosis. In this study we tried to investigate the effects of corilagin to ameliorate schistosomiasis hepatic fibrosis through regulating IL-13-associated signal pathway in vitro and in vivo. Cellular model was set up with hepatic stellate cells-T6 cells stimulated by rIL-13 and male Balb/c mice were infected with Schistosoma japonicum cercariaeas as animal model. Liver histological changes were observed with haematoxylin and eosin staining. Masson staining was employed to observe the change of egg granulomas. Expression of Col (collagen) and Col III were examined with Immunohistochemistry. Western bolt was employed to detect the JAK-1 and IL13Rα1 proteins. The mRNA expression of Col I, Col III, IL-13, JAK-1 and IL13Rα1 were tested by quantitative polymerase chain reaction. As a result, less inflammatory changes were found in all corilagin groups compared with model group and praziquantel group. The mRNA levels of Col I, Col III, IL-13, JAK-1 and IL13Rα1 were significantly decreased after corilagin intervention (P < 0·01). JAK-1 and IL-13Rα1 protein levels were also greatly decreased in the corilagin groups (P < 0·01). In conclusion, corilagin could ameliorate schistosomiasis hepatic fibrosis by down-regulating the expression of IL-13 and signal molecules in IL-13 pathway.
Collapse
|
6
|
Morimoto M, Saito C, Muto C, Akamatsu Y, Chiba T, Abe T, Azuma N, Suto Y. Impairment of host resistance to helminthes with age in murine small intestine. Parasite Immunol 2015; 37:171-9. [PMID: 25545318 DOI: 10.1111/pim.12170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/19/2014] [Indexed: 11/30/2022]
Abstract
Age-associated alterations of Th2 immune responses against nematode parasites are largely unknown. We investigated primary and memory responses against two types of gastrointestinal nematode parasites, Heligmosomoides polygyrus (Hp) and Nippostrongylus brasiliensis (Nb), in aged mice. The small intestinal gene expression of Th2 cytokines was almost unchanged after primary (Nb and Hp) and secondary infection (Hp) in aged mice in contrast to strongly increased small intestinal gene expression of Th2 cytokines in young (3-month-old) mice. Mucus production decreased (Nb), and worm expulsion was impaired (Nb and Hp) compared with the young mice. Immunofluorescent staining revealed that after Hp infection, the number of alternatively activated macrophages, which are induced by Th2 cytokines, was lower in the aged mice. On the other hand, the number of CD4(+) T cells recruited to the worm cysts was normal compared with the young mice. These results suggest that migration of CD4(+) T cells to the host-parasite interface is not affected by ageing. Alterations in Th2 immune responses in aged mice might be due to inappropriate or insufficient activation of CD4(+) T cells in the submucosa.
Collapse
Affiliation(s)
- M Morimoto
- School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai City, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Li XX, Chen JX, Wang LX, Sun J, Chen SH, Chen JH, Zhang XY, Zhou XN. Profiling B and T cell immune responses to co-infection of Mycobacterium tuberculosis and hookworm in humans. Infect Dis Poverty 2015; 4:20. [PMID: 25954506 PMCID: PMC4423492 DOI: 10.1186/s40249-015-0046-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/20/2015] [Indexed: 02/01/2023] Open
Abstract
Background Humoral and cellular immune responses play protective roles against Mycobacterium tuberculosis (MTB) infection. However, hookworm infection decreases the immune response to hookworm and bystander antigens. Currently, immune responses to co-infection of MTB and hookworm are still unknown, although co-infection has been one of the public health problems in co-endemic areas of pulmonary tuberculosis (PTB) and hookworm disease. Therefore, it is essential to evaluate B and T cell immune responses to the co-infection. Methods Seventeen PTB cases co-infected with hookworm, 26 PTB cases, 15 patients with hookworm infection, and 24 healthy controls without PTB or hookworm infection were enrolled in the study. Expressions of CD3, CD4, CD8, CD10, CD19, CD20, CD21, CD25, CD27, CD38, FoxP3, and PD-1 were assessed on B and T cell subsets using multicolor flow cytometry. Results For the B cell (CD19+) subsets, naïve B cells (CD10−CD27−CD21+CD20+), plasma cells (CD10−CD27+CD21−CD20−), and tissue-like memory B cells (CD10−CD27−CD21−CD20+) had higher proportions, whilst resting memory B cells (CD10−CD27+CD21+CD20+) had lower proportions in the group co-infected with MTB and hookworm as compared to other groups. Frequencies of activated memory B cells (CD10−CD27+CD21−CD20+) did not differ among the four groups. For the T cell (CD3+) subsets, frequencies of regulatory T cells (CD4+CD25+Foxp3+) and exhausted CD4+ and CD8+ T cells (CD4+PD-1+ and CD8+PD-1+) were higher, and frequencies of activated CD4+ and CD8+ T cells (CD4+CD38+ and CD8+CD38+) were lower in the co-infected group as compared to the other groups. Conclusion The change patterns of the cell profile of circulating lymphocytes were indentified in human co-infection of MTB and hookworm, which might indicate that the humoral and cellular immune responses are more suppressed. Electronic supplementary material The online version of this article (doi:10.1186/s40249-015-0046-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin-Xu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, 207 Rui Jin Er Road, Huangpu District, Shanghai, 200025 PR China (PRC) ; National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 PR China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, 207 Rui Jin Er Road, Huangpu District, Shanghai, 200025 PR China (PRC)
| | - Li-Xia Wang
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 PR China
| | - Jun Sun
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201508 PR China
| | - Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, 207 Rui Jin Er Road, Huangpu District, Shanghai, 200025 PR China (PRC)
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, 207 Rui Jin Er Road, Huangpu District, Shanghai, 200025 PR China (PRC)
| | - Xiao-Yan Zhang
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201508 PR China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, 207 Rui Jin Er Road, Huangpu District, Shanghai, 200025 PR China (PRC)
| |
Collapse
|
8
|
Mabbott NA, Kobayashi A, Sehgal A, Bradford BM, Pattison M, Donaldson DS. Aging and the mucosal immune system in the intestine. Biogerontology 2015; 16:133-45. [PMID: 24705962 DOI: 10.1007/s10522-014-9498-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/24/2014] [Indexed: 02/07/2023]
Abstract
Bacterial and viral infections of the gastrointestinal tract are more common in the elderly and represent a major cause of morbidity and mortality. The mucosal immune system provides the first line of defence against pathogens acquired by ingestion and inhalation, but its function is adversely affected in the elderly. This aging-related decline in the immune function is termed immunosenescence and is associated with diminished abilities to generate protective immunity, reduced vaccine efficacy, increased incidence of cancer, inflammation and autoimmunity, and the impaired ability to generate tolerance to harmless antigens. In this review we describe our current understanding of the effects immunosenescence has on the innate and adaptive arms of the mucosal immune system in the intestine. Current estimates suggest that by the year 2050 up to 40% of the UK population will be over 65 years old, bringing with it important health challenges. A thorough understanding of the mechanisms that contribute to the development of immunosenescence is therefore crucial to help identify novel approaches to improve mucosal immunity in the elderly.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK,
| | | | | | | | | | | |
Collapse
|
9
|
HIV enteropathy and aging: gastrointestinal immunity, mucosal epithelial barrier, and microbial translocation. Curr Opin HIV AIDS 2015; 9:309-16. [PMID: 24871087 DOI: 10.1097/coh.0000000000000066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Despite decreases in morbidity and mortality as a result of antiretroviral therapy, gastrointestinal dysfunction remains common in HIV infection. Treated patients are at risk for complications of 'premature' aging, such as cardiovascular disease, osteopenia, neurocognitive decline, malignancies, and frailty. This review summarizes recent observations in this field. RECENT FINDINGS Mucosal CD4 lymphocytes, especially Th17 cells, are depleted in acute HIV and simian immune deficiency virus (SIV) infections, although other cell types also are affected. Reconstitution during therapy often is incomplete, especially in mucosa. Mucosal barrier function is affected by both HIV infection and aging and includes paracellular transport via tight junctions and uptake through areas of apoptosis; other factors may affect systemic antigen exposure. The resultant microbial translocation is associated with systemic immune activation in HIV and SIV infections. There is evidence of immune activation and microbial translocation in the elderly. The immune phenotypes of immunosenescence in HIV infection and aging appear similar. There are several targets for intervention; blockage of residual mucosal virus replication, preventing antigen uptake, modulating the microbiome, improving T cell recovery, combining therapies aimed at mucosal integrity, augmenting mucosal immunity, and managing traditional risk factors for premature aging in the general population. SUMMARY Aging may interact with HIV enteropathy to enhance microbial translocation and immune activation.
Collapse
|
10
|
Willenborg S, Eming SA. Macrophages - sensors and effectors coordinating skin damage and repair. J Dtsch Dermatol Ges 2014; 12:214-21, 214-23. [PMID: 24580874 DOI: 10.1111/ddg.12290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Restoration of skin integrity and homeostasis following injury is a vital process. Wound healing disorders, including chronic skin ulcers and pathological scarring, are of major clinical impact. The current therapeutic approaches are often not sufficient. The development of novel efficient therapies requires a thorough understanding of the underlying molecular mechanisms. A cardinal feature of non-healing skin ulcers and excessive scarring is a prolonged inflammatory response at the wound site, which aborts the healing response. Modulation of the local immune response may be an effective therapeutic strategy to correct impaired healing conditions. Yet, the specific mechanisms of inflammation, particularly the role of the diverse leukocyte lineages attracted to the site of tissue damage, have not been resolved. Recent findings in diverse experimental model systems and clinical studies have refined the understanding of monocyte/macrophage biology and the role of cells of the monocytic lineage in tissue regeneration. Thus, monocytes/macrophages are emerging as novel and interesting therapeutic targets to interfere in wound healing pathologies. In this article we will review the role of monocytes/macrophages in skin repair in the light of the recent literature and findings from our own group. This article will provide a rationale for monocyte/macrophage-based therapies to facilitate the healing response.
Collapse
|
11
|
Nascimento WC, Silva RP, Fernandes ES, Silva MC, Holanda GC, Santos PA, Albuquerque MP, Costa VA, Pontes-Filho NT, Souza VO. Immunomodulation of liver injury by Ascaris suum extract in an experimental model of autoimmune hepatitis. Parasitol Res 2014; 113:3309-17. [PMID: 24951170 DOI: 10.1007/s00436-014-3994-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 06/06/2014] [Indexed: 12/31/2022]
Abstract
Adult worm extract from Ascaris suum (Asc) has immunosuppressive activity and elicits Th2/IL-4/IL-10 response. This study evaluated the prophylactic and therapeutic effect of Asc in a murine model of concanavalin A (ConA)-induced autoimmune hepatitis (AIH). BALB/c mice received ConA, iv, (20 mg/kg), and three groups of animals were formed: (1) AIH, received only ConA; (2) AIH + Asc prophylactic, treated with Asc (1 mg/ml), ip, 30 min before of the AIH; and (3) AIH + Asc therapeutic, treated with Asc 2 h after the AIH. Plasma transaminase and immunoglobulins (measured at 8 and 24 h and 7 days after treatment) and cytokine production (IL-4, IL-10, IL-13, and IFN-γ) by splenocytes upon ConA and Asc stimulus were compared. The livers were weighed and examined histologically. In the AIH group, there was an increase in liver weight, transaminase levels, and total immunoglobulins. These parameters were reduced by 8-24 h and 7 days in the prophylactic group, but in the therapeutic group, only on day 7. The survival rate of mice in the AIH group was 38.5%, compared to 67% in the therapeutic Asc group. The survival rate of the animals with AIH that were prophylactically treated with Asc was 100%. A decrease of cellular infiltration and high levels of IL-4, IL-10, and IL-13 were induced by Asc. An increase of liver fibrosis was also observed, but with less intensity with prophylactic treatment. Thus, the Ascaris components have an inhibitory effect on AIH, with an intense Th2 immune response.
Collapse
Affiliation(s)
- Wheverton C Nascimento
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, 50.670-901, Pernambuco, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Myeloid cell-specific expression of Ship1 regulates IL-12 production and immunity to helminth infection. Mucosal Immunol 2012; 5:535-43. [PMID: 22535180 DOI: 10.1038/mi.2012.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Helminth infection leads to the local proliferation and accumulation of macrophages in tissues. However, the function of macrophages during helminth infection remains unclear. SH2-containing inositol 5'-phosphatase 1 (Ship1, Inpp5d) is a lipid phosphatase that has been shown to play a critical role in macrophage function. Here, we identify a critical role for Ship1 in the negative regulation of interleukin (IL)-12/23p40 production by macrophages during infection with the intestinal helminth parasite Trichuris muris. Mice with myeloid cell-specific deletion of Ship1 (Ship1(ΔLysM) mice) develop a non-protective T-helper type 1 cell response and fail to expel parasites. Ship1-deficient macrophages produce heightened levels of IL-12/23p40 in vitro and in vivo and antibody blockade of IL-12/23p40 renders Ship1(ΔLysM) mice resistant to Trichuris infection. Our results identify a critical role for the negative regulation of IL-12/23p40 production by macrophages in the development of a protective T(H)2 cell response.
Collapse
|
13
|
Maizels RM, Hewitson JP, Murray J, Harcus YM, Dayer B, Filbey KJ, Grainger JR, McSorley HJ, Reynolds LA, Smith KA. Immune modulation and modulators in Heligmosomoides polygyrus infection. Exp Parasitol 2012; 132:76-89. [PMID: 21875581 PMCID: PMC6485391 DOI: 10.1016/j.exppara.2011.08.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/09/2011] [Accepted: 08/15/2011] [Indexed: 01/12/2023]
Abstract
The intestinal nematode parasite Heligmosomoides polygyrus bakeri exerts widespread immunomodulatory effects on both the innate and adaptive immune system of the host. Infected mice adopt an immunoregulated phenotype, with abated allergic and autoimmune reactions. At the cellular level, infection is accompanied by expanded regulatory T cell populations, skewed dendritic cell and macrophage phenotypes, B cell hyperstimulation and multiple localised changes within the intestinal environment. In most mouse strains, these act to block protective Th2 immunity. The molecular basis of parasite interactions with the host immune system centres upon secreted products termed HES (H. polygyrus excretory-secretory antigen), which include a TGF-β-like ligand that induces de novo regulatory T cells, factors that modify innate inflammatory responses, and molecules that block allergy in vivo. Proteomic and transcriptomic definition of parasite proteins, combined with biochemical identification of immunogenic molecules in resistant mice, will provide new candidate immunomodulators and vaccine antigens for future research.
Collapse
Affiliation(s)
- Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The absence of MyD88 has no effect on the induction of alternatively activated macrophage during Fasciola hepatica infection. BMC Immunol 2011; 12:63. [PMID: 22074389 PMCID: PMC3226545 DOI: 10.1186/1471-2172-12-63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/11/2011] [Indexed: 01/04/2023] Open
Abstract
Background Alternatively activated macrophages (AAMϕ) play important roles in allergies and responses to parasitic infections. However, whether signaling through toll-like receptors (TLRs) plays any role in AAMϕ induction when young Fasciola hepatica penetrates the liver capsule and migrates through the liver tissue is still unclear. Results The data show that the lack of myeloid differentiation factor 88 (MyD88) has no effect on the AAMϕ derived from the bone marrow (BMMϕ) in vitro and does not impair the mRNA expression of arginase-1, resistin-like molecule (RELMα), and Ym1 in BMMϕs. The Th2 cytokine production bias in splenocytes was not significantly altered in F. hepatica-infected mice in the absence of MyD88 in vitro and in the pleural cavity lavage in vivo. In addition, MyD88-deficiency has no effect on the arginase production of the F. hepatica elicited macrophages (Fe Mϕs), production of RELMα and Ym1 proteins and mRNA expression of Ym1 and RELMα of macrophages in the peritoneal cavity 6 weeks post F. hepatica infection. Conclusions The absence of MyD88 has no effect on presence of AAMϕ 6 weeks post F. hepatica infection.
Collapse
|
15
|
MORIMOTO M, TAKAGI Y, HIGASHI N, SUZUKI T. Orally Administered Rutin Inhibits the Gene Expression of Th2 Cytokines in the Gut and Lung in Aged Mice. J Vet Med Sci 2011; 73:1257-63. [DOI: 10.1292/jvms.10-0480] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Motoko MORIMOTO
- School of Food, Agricultural and Environmental Sciences, Miyagi University
| | | | | | - Tateo SUZUKI
- School of Food, Agricultural and Environmental Sciences, Miyagi University
| |
Collapse
|