1
|
Jia J, Zhao M, Ma K, Zhang H, Gui L, Sun H, Ren H, Okabayashi T, Zhao J. The Immunoprotection of OmpH Gene Deletion Mutation of Pasteurella multocida on Hemorrhagic Sepsis in Qinghai Yak. Vet Sci 2023; 10:vetsci10030221. [PMID: 36977260 PMCID: PMC10055848 DOI: 10.3390/vetsci10030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
OmpH is among the most important virulence factors of Pasteurella multocida, which mediates septicemia in yaks (Bos grunniens I) after infection with the bacteria. In the present study, yaks were infected with wild-type (WT) (P0910) and OmpH-deficient (ΔOmpH) P. multocida strains. The mutant strain was generated through the reverse genetic operation system of pathogens and proteomics technology. The live-cell bacterial count and clinical manifestations of P. multocida infection in Qinghai yak tissues (thymus, lung, spleen, lymph node, liver, kidney, and heart) were analyzed. The expression of differential proteins in the yak spleen under different treatments was analyzed using the marker-free method. We found that compared with the mutant strain, the titer of wild-type strains was significantly higher in tissues. Additionally, compared with other organs, the bacteria titer was significantly higher in the spleen. Compared with the WT p0910 strain, the mutant strain generated milder pathological changes in the tissues of yak. Proteomics analysis revealed that 57 of the 773 proteins expressed in P. multocida were significantly differentially expressed between the ΔOmpH and P0910 groups. Of the 57, 14 were over-expressed, whereas 43 were under-expressed. The differentially expressed proteins in the ΔompH group regulated the ABC transporter (ATP-powered translocation of many substrates across membranes) system, the two-component system, RNA degradation, RNA transcription, glycolysis/gluconeogenesis, biosynthesis of ubiquinone and other terpenoid-quinones, oxidative phosphorylation (citrate cycle) as well as fructose and mannose metabolism. The relationship among 54 significantly regulated proteins was analyzed using STRING. We found that WT P0910 and ΔOmpH of P. multocida infection activated the expression of ropE, HSPBP1, FERH, ATP10A, ABCA13, RRP7A, IL-10, IFN-γ, IL-17A, EGFR, and dnaJ. Overall, deletion of the OmpH gene weakened the virulence but maintained the immunogenicity of P. multocida in yak. The findings of this study provide a strong foundation for the pathogenesis of P. multocida and the management of related septicemia in yaks.
Collapse
Affiliation(s)
- Jianlei Jia
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
- School of Life Sciences, Qilu Normal University, Jinan 250200, China
| | - Meng Zhao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Kairu Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Hongjian Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Huzhi Sun
- Qingdao Phagepharm Bio-Tech Co., Ltd., Qingdao 266109, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Tamaki Okabayashi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Jing Zhao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
- Correspondence:
| |
Collapse
|
2
|
Apinda N, Yao Y, Zhang Y, Reddy VRAP, Chang P, Nair V, Sthitmatee N. CRISPR/Cas9 Editing of Duck Enteritis Virus Genome for the Construction of a Recombinant Vaccine Vector Expressing ompH Gene of Pasteurella multocida in Two Novel Insertion Sites. Vaccines (Basel) 2022; 10:vaccines10050686. [PMID: 35632442 PMCID: PMC9147145 DOI: 10.3390/vaccines10050686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Duck enteritis virus (DEV) and Pasteurella multocida, the causative agent of duck plague and fowl cholera, are acute contagious diseases and leading causes of morbidity and mortality in duck. The NHEJ-CRISPR/Cas9-mediated gene editing strategy, accompanied with the Cre–Lox system, have been employed in the present study to show that two new sites at UL55-LORF11 and UL44-44.5 loci in the genome of the attenuated Jansen strain of DEV can be used for the stable expression of the outer membrane protein H (ompH) gene of P. multocida that could be used as a bivalent vaccine candidate with the potential of protecting ducks simultaneously against major viral and bacterial pathogens. The two recombinant viruses, DEV-OmpH-V5-UL55-LORF11 and DEV-OmpH-V5-UL44-44.5, with the insertion of ompH-V5 gene at the UL55-LORF11 and UL44-44.5 loci respectively, showed similar growth kinetics and plaque size, compared to the wildtype virus, confirming that the insertion of the foreign gene into these did not have any detrimental effects on DEV. This is the first time the CRISPR/Cas9 system has been applied to insert a highly immunogenic gene from bacteria into the DEV genome rapidly and efficiently. This approach offers an efficient way to introduce other antigens into the DEV genome for multivalent vector.
Collapse
Affiliation(s)
- Nisachon Apinda
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Yongxiu Yao
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.R.A.P.R.); (P.C.); (V.N.)
| | - Yaoyao Zhang
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.R.A.P.R.); (P.C.); (V.N.)
| | | | - Pengxiang Chang
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.R.A.P.R.); (P.C.); (V.N.)
| | - Venugopal Nair
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.R.A.P.R.); (P.C.); (V.N.)
- Jenner Institute, University of Oxford, Oxford OX1 2JD, UK
- Department of Zoology, University of Oxford, Oxford OX1 2JD, UK
| | - Nattawooti Sthitmatee
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-948-017; Fax: +66-53-948-041
| |
Collapse
|
3
|
Muenthaisong A, Rittipornlertrak A, Nambooppha B, Tankaew P, Varinrak T, Pumpuang M, Muangthai K, Atthikanyaphak K, Singhla T, Pringproa K, Punyapornwithaya V, Sawada T, Sthitmatee N. Immune response in dairy cattle against combined foot and mouth disease and haemorrhagic septicemia vaccine under field conditions. BMC Vet Res 2021; 17:186. [PMID: 33952269 PMCID: PMC8097834 DOI: 10.1186/s12917-021-02889-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Foot-and-mouth disease (FMD) and Haemorrhagic septicemia (HS) are two important diseases that are known to have caused significant economic losses to the cattle industry. Accordingly, vaccinations have been recognized as an efficient method to control and prevent both of the above-mentioned diseases. This study aimed to determine the immune response to FMD virus antigens and the recombinant outer membrane protein of HS (rOmpH) of Pasteurella multocida in cattle administered as a combination vaccine and compare antibody titers with the two vaccines given independently, under field conditions. Dairy cattle were divided into three groups. Each group was immunized with different vaccine types according to the vaccination program employed in this study. Antibody responses were determined by indirect ELISA, liquid phase blocking ELISA (LPB-ELISA) and viral neutralization test (VNT). Furthermore, the cellular immune responses were measured by lymphocyte proliferation assay (LPA). Results The overall antibody titers to HS and FMDV were above cut-off values for the combined FMD-HS vaccine in this study.The mean antibody titer against HS after the first immunization in the combined FMD-HS vaccine groups was higher than in the HS vaccine groups. However, no statistically significant differences (p > 0.05) were observed between groups. Likewise, the antibody titer to the FMDV serotypes O/TAI/189/87 and Asia 1/TAI/85 determined by LPB-ELISA in the combined vaccine were not statistically significantly different when compared to the FMD vaccine groups. However, the mean VNT antibody titer of combined vaccine against serotype O was significantly higher than the VN titer of FMD vaccine groups (p < 0.05). Moreover, the LPA results showed that all vaccinated groups displayed significantly higher than the negative control (p < 0.05). Nevertheless, no differences in the lymphocyte responses were observed in comparisons between the groups (p > 0.05). Conclusions The combined FMD-HS vaccine formulated in this study could result in high both antibody and cellular immune responses without antigenic competition. Therefore, the combined FMD-HS vaccine can serve as an alternative vaccine against both HS and FMD in dairy cattle under field conditions.
Collapse
Affiliation(s)
- Anucha Muenthaisong
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Amarin Rittipornlertrak
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Boondarika Nambooppha
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Pallop Tankaew
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Thanya Varinrak
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Marutpong Pumpuang
- Bureau of Veterinary Biologics, Department of Livestock Developments, Ministry of Agriculture and Cooperative, 30130, Nakhon Ratchasima, Thailand
| | - Korkiat Muangthai
- Bureau of Veterinary Biologics, Department of Livestock Developments, Ministry of Agriculture and Cooperative, 30130, Nakhon Ratchasima, Thailand
| | - Kheemchompu Atthikanyaphak
- Bureau of Veterinary Biologics, Department of Livestock Developments, Ministry of Agriculture and Cooperative, 30130, Nakhon Ratchasima, Thailand
| | - Tawatchai Singhla
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Veerasak Punyapornwithaya
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand
| | - Takuo Sawada
- Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University, 180-8602, Musashino, Tokyo, Japan
| | - Nattawooti Sthitmatee
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Chiang Mai, Thailand. .,Excellence Center in Veterinary Bioscience, Chiang Mai University, 50100, Chiang Mai, Thailand.
| |
Collapse
|
4
|
Apinda N, Nambooppha B, Rittipornlertrak A, Tankaew P, Punyapornwithaya V, Nair V, Sawada T, Sthitmatee N. Protection against fowl cholera in ducks immunized with a combination vaccine containing live attenuated duck enteritis virus and recombinant outer membrane protein H of Pasteurella multocida. Avian Pathol 2020; 49:221-229. [PMID: 31899951 DOI: 10.1080/03079457.2019.1711020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fowl cholera is a highly contagious disease within the global duck farming industry. This study aimed at formulating and evaluating the protective efficacy of a combination vaccine containing a recombinant outer membrane protein H (rOmpH) of Pasteurella multocida strain X-73 with a live attenuated duck plague vaccine into a single dose. Four groups of ducks received different treatments and the groups were labelled as non-vaccinated, combined vaccination, duck plague vaccination and rOmpH vaccination, respectively. The combined vaccination group was comprised of live attenuated duck plague commercial vaccine with 100 µg rOmpH to a total volume of 0.5 ml/duck/intramuscular administration. All groups were challenged with avian P. multocida strain X-73 via intranasal administration. In addition, blood samples were collected monthly over a period of 6 months to determine the appropriate antibody level by indirect ELISA. The indirect ELISA results in the combination vaccine group revealed that the average levels of the serum antibody against the duck enteritis virus (0.477 ± 0.155) and fowl cholera (0.383 ± 0.100) were significantly higher than those values in the non-vaccinated control group (0.080 ± 0.027 and 0.052 ± 0.017), respectively (P < 0.05). Moreover, all vaccinated ducks were effectively protected from fowl cholera. This preliminary study indicated that a combination vaccine did not affect the antibody response in the subjects while protecting the ducks against experimental P. multocida infection. This combination vaccine should be considered part of an alternative pre-treatment strategy that could replace the monovalent vaccine.
Collapse
Affiliation(s)
- Nisachon Apinda
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Boondarika Nambooppha
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Amarin Rittipornlertrak
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pallop Tankaew
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Venugopal Nair
- The Pirbright Institute, Surrey, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Takuo Sawada
- Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Nattawooti Sthitmatee
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Varinrak T, Muenthaisong A, Apinda N, Sawada T, Sthitmatee N. Construction and characterization of an OmpH-deficient mutant of Pasteurella multocida strain X-73. Avian Pathol 2018; 48:4-11. [DOI: 10.1080/03079457.2018.1533239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Thanya Varinrak
- Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Anucha Muenthaisong
- Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Nisachon Apinda
- Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Takuo Sawada
- Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
- Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Nattawooti Sthitmatee
- Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Chen Y, Sun E, Yang L, Song J, Wu B. Therapeutic Application of Bacteriophage PHB02 and Its Putative Depolymerase Against Pasteurella multocida Capsular Type A in Mice. Front Microbiol 2018; 9:1678. [PMID: 30131774 PMCID: PMC6090149 DOI: 10.3389/fmicb.2018.01678] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022] Open
Abstract
Phage PHB02 specifically infects Pasteurella multocida capsular serogroup A strains. In this study, we found that capsule deletion mutants were not lysed by PHB02, suggesting that the capsule of P. multocida serogroup A strains might be the primary receptor. Based on sequence analysis, a gene encoding a phage-associated putative depolymerase was identified. The corresponding recombinant depolymerase demonstrated specific activity against capsular serogroup A strains but did not strip capsule deletion mutants. In vivo experiments showed that PHB02 was retained at detectable levels in the liver, spleen, kidneys, lung, and blood, at 24 h post-administration in mice. Depolymerase plus serum significantly reduced the number of viable wild-type P. multocida strain HB03 cells (3.5–4.5 log decrease in colony-forming units). Moreover, treatment with phage or purified depolymerase resulted in significantly increased survival of mice infected with P. multocida HB03, and an absence of increase of eosinophils and basophils or other pathological changes when compared with the control group. These results show that phage PHB02 and its putative depolymerase represent a novel strategy for controlling P. multocida serogroup A strains.
Collapse
Affiliation(s)
- Yibao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
| | - Erchao Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
| | - Lan Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
| | - Jiaoyang Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
| |
Collapse
|
7
|
Varinrak T, Poolperm P, Sawada T, Sthitmatee N. Cross-protection conferred by immunization with an rOmpH-based intranasal fowl cholera vaccine. Avian Pathol 2017; 46:515-525. [PMID: 28421815 DOI: 10.1080/03079457.2017.1321105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A previous study demonstrated that a recombinant outer membrane protein H (rOmpH)-based intranasal fowl cholera vaccine elicited efficient homologous protection against the Pasteurella multocida strain X-73 (A:1) in chickens. The present study aimed to determine the cross-protectivity against heterologous P. multocida strains. The rOmpH was purified via electroelution and formulated with two kinds of adjuvants. The vaccine formulations in a total volume of 100 µl were 100 µg rOmpH with 3 µg of Escherichia coli enterotoxin B or 10 µg of CpG ODN2007. Chickens were assigned to three experimental groups depending on bacterial strain challenge exposure as well as three control groups. The chickens were immunized intranasally three times at three-week intervals. Challenge exposures were conducted by inoculation with homologous strain X-73 or heterologous strains P-1059 (A:3) or P-1662 (A:4) at four weeks after the final immunization. The specific antibody against rOmpH was produced in vaccinated birds. Sera IgY and secretory IgA antibody titres were significantly increased (P < 0.05) post-immunization. The stimulation index values of the vaccinated groups were significantly different from stimulation index values of the non-vaccinated groups (P < 0.05). Chicken survival rates after exposure to avian P. multocida strains ranged from 70% to 100%. There was no significant difference in protection between two kinds of adjuvants in vaccine formulations. Statistical analysis indicated no significant differences in protection among avian P. multocida strains challenge exposure. We conclude that an in-house rOmpH-based intranasal fowl cholera vaccine produced efficient cross-protectivity against heterologous strains of P. multocida.
Collapse
Affiliation(s)
- Thanya Varinrak
- a Faculty of Veterinary Medicine , Chiang Mai University , Chiang Mai , Thailand
| | - Pichayanut Poolperm
- a Faculty of Veterinary Medicine , Chiang Mai University , Chiang Mai , Thailand
| | - Takuo Sawada
- a Faculty of Veterinary Medicine , Chiang Mai University , Chiang Mai , Thailand.,b Laboratory of Veterinary Microbiology , Nippon Veterinary and Life Science University , Tokyo , Japan
| | | |
Collapse
|
8
|
High and low-virulent bovine Pasteurella multocida capsular type A isolates exhibit different virulence gene expression patterns in vitro and in vivo. Vet Microbiol 2016; 196:44-49. [DOI: 10.1016/j.vetmic.2016.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/26/2016] [Accepted: 10/09/2016] [Indexed: 11/18/2022]
|
9
|
Sthitmatee N, Yano T, Lampang KN, Suphavilai C, Kataoka Y, Sawada T. A 39-kDa capsular protein is a major cross-protection factor as demonstrated by protection of chickens with a live attenuated Pasteurella multocida strain of P-1059. J Vet Med Sci 2013; 75:923-8. [PMID: 23449462 DOI: 10.1292/jvms.12-0475] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to show that a 39-kDa protein or OmpH of Pasteurella multocida strain P-1059 is essential for cross protection. Strain PBA322, a thinly capsulated strain of P. multocida strain P-1059, was used as a live vaccine in chickens. Strain PBA322 is a thinly capsulated strain in comparison with the parental strain P-1059. Chickens were vaccinated by single injection and then challenge-exposed with strains P-1059 or X-73 at two weeks post vaccination. Moreover, immune responses were also evaluated for both humoral and cellular immune response by ELISA and lymphocyte proliferation assay, respectively. The results showed that the live vaccine induced efficient immunity to protect chickens from challenge-exposure to the parent strain, but that the heterologous protection was poor. We concluded that the 39-kDa protein is essential for cross protection.
Collapse
Affiliation(s)
- Nattawooti Sthitmatee
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine,Chiang Mai University, Chiang Mai 50100, Thailand.
| | | | | | | | | | | |
Collapse
|