1
|
Mochamad L, Malarvili S, Jasmine K, Lim V. In vitro analysis of quercetin-like compounds from mistletoe Dendrophthoe pentandra (L.) Miq as a potential antiviral agent for Newcastle disease. F1000Res 2024; 12:1214. [PMID: 38962299 PMCID: PMC11220444 DOI: 10.12688/f1000research.133489.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/05/2024] Open
Abstract
Background Recent evidence suggests that some flavonoid compounds obtained from crude methanol extract of mistletoe leaves ( Dendrophthoe pentandra L. Miq), also known as Benalu Duku (BD), have antimicrobial effects. Thus, the plant has the potential to eliminate viruses that may cause outbreaks in chicken farms. This study aimed to prove the in vitro ability of flavonoid compounds, namely quercetin-like compounds (QLCs), to eliminate field viruses, specifically the Newcastle disease virus (NDV). Methods This research was performed in two stages. An in vitro test was used with a post-test of the control groups designed at a significance of 0.05. BD leaves (5 kg) were extracted using a maceration method with methanol and then separated into hexane, chloroform, ethyl acetate, and methanol fractions. The final extracted products were separated using semi-preparative high-performance liquid chromatography (HPLC) to obtain QLCs. The QLCs were identified and compared with quercetin using HPLC, proton and carbon nuclear magnetic resonance spectrometry, Fourier transform infrared spectrophotometry and ultra-performance liquid chromatography-mass spectrometry. The activity of QLCs was tested in vitro against the NDV at a virulence titter of 10 -5 Tissue Culture Infectious Dose 50% (TCID50) in chicken kidney cell culture. Results Solutions of 0.05% (w/v) QLCs were discovered to have antiviral activity against NDVs, with an average cytopathogenic effect antigenicity at a 10 -5 dilution (p<0.05). Conclusions QLCs from flavonoids from the leaves of BD have in vitro antiviral bioactivity against NDV at a virulence titter of 10-5 Tissue Culture Infectious Dose 50% (TCID50) in chicken kidney cell culture. QLCs may have the potential to be developed as medicinal compounds for the treatment of other human or animal viral infections.
Collapse
Affiliation(s)
- Lazuardi Mochamad
- Sub-division Veterinary Pharmacy Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Selvaraja Malarvili
- Faculty of Pharmaceutical Sciences, UCSI University, No.1, Jalan Menara Gading, Taman Connaught, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Khairat Jasmine
- Institute of Biological Science, Faculty of Science, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Penang, 13200, Malaysia
| |
Collapse
|
2
|
El-Shemy AA, Amer MM, Hassan HM, Elaish M. Epidemiological distribution of respiratory viral pathogens in marketable vaccinated broiler chickens in five governorates in the Nile Delta, Egypt, from January 2022 to October 2022. Vet World 2024; 17:303-312. [PMID: 38595666 PMCID: PMC11000479 DOI: 10.14202/vetworld.2024.303-312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/10/2024] [Indexed: 04/11/2024] Open
Abstract
Background and Aim Respiratory viral infections significantly negatively impact animal welfare and have significant financial implications in the poultry industry. This study aimed to determine the frequency of the most economically relevant respiratory viruses that circulated in Egyptian chicken flocks in 2022. Materials and Methods Chickens from 359 broiler flocks in five different Egyptian governorates in the Nile Delta (Beheira, Gharbia, Giza, Monufiya, and Qalyoubia) at marketing time (33-38 days of age) were used in this study. Combined oropharyngeal and cloacal swabs and tissue samples were collected from clinically diseased or freshly dead birds suffering from respiratory disease. Avian influenza (AI)-H5, AI-H9, Newcastle disease (ND), and infectious bronchitis virus (IBV) were analyzed by reverse transcriptase polymerase chain reaction. Results Of the 359 flocks examined, 293 tested positive, whereas 66 were completely negative for the four viruses evaluated, with the highest positive results in Beheira. Out of 293 positive flocks, 211 were positive for a single virus, with Beheira having the highest rate, followed by Qalyoubia, Giza, and Monufiya. ND virus (NDV) was found to be the highest across all governorates, followed by IBV, AI-H9, and AI-H5. A double infection was detected in 73 flocks with either H9 or ND, or both H9 and IB could coinfect each other. The most common viral coinfections were H9 + IB, ND + IB, and ND + H9. Giza had the highest prevalence of ND + H9, H9 + IB, and ND + IB coinfection in the governorates, followed by Monufiya and Beheira. Only six out of 359 flocks were tribally infected with ND + H9 + IB in Giza, Monufiya, and Beheira governorates. On the basis of the number of flocks and the month of the year, July had the lowest number of flocks (23), while September and October had the highest number (48 flocks). Positive flock numbers were highest in October and lowest in January. Conclusion From January to October 2022, prevalent respiratory viral infections (H5N1, NDV, H9N2, and IBV) were detected in broiler chickens across the Delta area governorate, according to the findings of the present study. In addition, IBV and H9, either alone or in combination, significantly contributed to the respiratory infection observed in broiler chickens. Regardless of the type and origin of the vaccine used, it is not possible to protect broiler chickens from the development of the infection and the subsequent dissemination of the virus into the poultry environment. In the presence of face-infectious field virus mutations, poultry vaccinations must be regularly reviewed and updated, and poultry farms must take further biosecurity measures.
Collapse
Affiliation(s)
- Ahmed Ali El-Shemy
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| | - Mohamed Mahrous Amer
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, P.O. Code 12211, Giza, Egypt
| | - Heba M. Hassan
- Agriculture Research Center, Animal Health Research Institute, Dokki, PO. Box 246, Giza 12618, Egypt
| | - Mohamed Elaish
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, P.O. Code 12211, Giza, Egypt
| |
Collapse
|
3
|
Panyako PM, Ommeh SC, Kuria SN, Lichoti JK, Musina J, Nair V, Nene V, Oyola SO, Munir M. Metagenomic characterization reveals virus coinfections associated with Newcastle disease virus among poultry in Kenya. J Basic Microbiol 2023; 63:1383-1396. [PMID: 37821414 DOI: 10.1002/jobm.202300390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/20/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
Newcastle disease (ND) is an endemic viral disease affecting poultry and causing massive economic losses. This cross-sectional purposive study detected coinfections that are associated with the Newcastle disease virus among poultry from selected regions in Kenya. Cloacal (n = 599) and oral-pharyngeal (n = 435) swab samples were collected and pooled into 17 and 15 samples, respectively. A total of 17,034,948 and 7,751,974 paired-end reads with an average of 200 nucleotides were generated from the cloacal and oral-pharyngeal swab samples, respectively. Analysis of the de novo assembled contigs identified 177 and 18 cloacal and oral-pharyngeal contigs, respectively with hits to viral sequences, as determined by BLASTx and BLASTn analyses. Several known and unknown representatives of Coronaviridae, Picobirnaviridae, Reoviridae, Retroviridae, and unclassified Deltavirus were identified in the cloacal swab samples. However, no Newcastle disease virus (family Paramyxoviridae) was detected in the cloacal swabs, although they were detected in the oropharyngeal swabs of chickens sampled in Nairobi, Busia, and Trans Nzoia. Additionally, sequences representative of Paramyxoviridae, Coronaviridae, and Retroviridae were identified in the oral-pharyngeal swab samples. Infectious bronchitis virus and rotavirus were chickens' most prevalent coinfections associated with the Newcastle disease virus. The detection of these coinfections suggests that these viruses are significant threats to the control of Newcastle disease as the Newcastle disease virus vaccines are known to fail because of these coinfections. Therefore, this study provides important information that will help improve disease diagnosis and vaccine development for coinfections associated with the Newcastle disease virus.
Collapse
Affiliation(s)
- Philip M Panyako
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Sheila C Ommeh
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Stephen N Kuria
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Jacqueline K Lichoti
- State Department of Livestock, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Johns Musina
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya
| | - Venugopal Nair
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, UK
| | - Vish Nene
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Samuel O Oyola
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Muhammad Munir
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| |
Collapse
|
4
|
de Graaf J, van Nieuwkoop S, de Meulder D, Lexmond P, Kuiken T, Groeneveld D, Fouchier R, van den Hoogen B. Assessment of the virulence for chickens of Newcastle Disease virus with an engineered multi-basic cleavage site in the fusion protein and disrupted V protein gene. Vet Microbiol 2022; 269:109437. [DOI: 10.1016/j.vetmic.2022.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
|
5
|
Pathogenesis of Velogenic Genotype VII.1.1 Newcastle Disease Virus Isolated from Chicken in Egypt via Different Inoculation Routes: Molecular, Histopathological, and Immunohistochemical Study. Animals (Basel) 2021; 11:ani11123567. [PMID: 34944344 PMCID: PMC8698073 DOI: 10.3390/ani11123567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Newcastle disease virus (NDV) remains a constant threat to the poultry industry. There is scarce information concerning the pathogenicity and genetic characteristics of the circulating velogenic Newcastle disease virus (NDV) in Egypt. In the present work, NDV was screened from tracheal swabs collected from several broiler chicken farms (N = 12) in Dakahlia Governorate, Egypt. Real-time reverse transcriptase polymerase chain reaction (RRT-PCR) was used for screening of velogenic and mesogenic NDV strains through targeting F gene fragment amplification, followed by sequencing of the resulting PCR products. The identified strain, namely, NDV-CH-EGYPT-F42-DAKAHLIA-2019, was isolated and titrated in the allantoic cavity of 10 day old specific pathogen-free (SPF) embryonated chicken eggs (ECEs), and then their virulence was determined by mean death time (MDT) and intracerebral pathogenicity index (ICPI). The pathogenicity of the identified velogenic NDV strain was also assessed in 28 day old chickens using different inoculation routes as follows: intraocular, choanal slit, intranasal routes, and a combination of both intranasal and intraocular routes. In addition, sera were collected 5 and 10 days post inoculation (pi) for the detection of NDV antibodies by hemagglutination inhibition test (HI), and tissue samples from different organs were collected for histopathological and immunohistochemical examination. A series of different clinical signs and postmortem lesions were recorded with the various routes. Interestingly, histopathology and immunohistochemistry for NDV nucleoprotein displayed widespread systemic distribution. The intensity of viral nucleoprotein immunolabeling was detected within different cells including the epithelial and endothelium lining, as well as macrophages. The onset, distribution, and severity of the observed lesions were remarkably different between various inoculation routes. Collectively, a time-course comparative pathogenesis study of NDV infection demonstrated the role of different routes in the pathogenicity of NDV. The intranasal challenge was associated with a prominent increase in NDV lesions, whereas the choanal slit route was the route least accompanied by severe NDV pathological findings. Clearly, the present findings might be helpful for implementation of proper vaccination strategies against NDV.
Collapse
|
6
|
Kusumarahayu NP, Putri N, Ernawati R, Rahmahani J, Suwarno S, Rantam FA. Molecular characterisation of Newcastle disease virus exotic isolate in East Java, Indonesia. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2019-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Newcastle disease virus (NDV) is ssRNA paramyxovirus causing clinical signs, varying from subclinical infections to 100% mortality in infected chickens. Haemagglutinin-neuraminidase (HN) protein has an important role related to infection and pathogenesis, therefore, the protein was characterised in this study. Samples were collected from 45 cloacal swabs of native chickens. They were isolated by inoculating in specific pathogen-free embryonated eggs. Molecular detection of NDV was done by reverse transcriptase polymerase chain reaction (RT-PCR) encoding HN protein. RT-PCR for HN gene of NDV generated DNA fragments sized 503 bp, which were then sequenced using ABI Prism. The results have shown that virus isolates were mostly lentogenic and might contribute to outbreak in East Java, Indonesia. Based on this fact, NDV infected native chickens can act as reservoir and contribute to outbreak in the poultry. Our study provides baseline information on genetic characteristics of NDV circulating in East Java and serves as a basic work for further research.
Collapse
|
7
|
Rehman ZU, Ren S, Yang B, Yang X, Butt SL, Afzal A, Malik MI, Sun Y, Yu S, Meng C, Ding C. Newcastle disease virus induces testicular damage and disrupts steroidogenesis in specific pathogen free roosters. Vet Res 2020; 51:84. [PMID: 32600413 PMCID: PMC7322901 DOI: 10.1186/s13567-020-00801-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
Newcastle disease (ND), which is caused by Newcastle disease virus (NDV), can cause heavy economic losses to the poultry industry worldwide. It is characterised by extensive pathologies of the digestive, respiratory, and nervous systems and can cause severe damage to the reproductive system of egg-laying hens. However, it is unknown whether NDV replicates in the male reproductive system of chickens and induces any pathologies. In this study, we selected a representative strain (i.e. ZJ1) of the most common genotype (i.e. VII) of NDV to investigate whether NDV can induce histological, hormonal, and inflammatory responses in the testes of specific pathogen free (SPF) roosters. NDV infection increased the expression of toll like receptor TLR3, TLR7, MDA5, IFN-α, IFN-β, IFN-γ, IL-8, and CXCLi1 in the testes of NDV-infected roosters at 5 days post-infection (dpi). Severe histological changes, including decrease in the number of Sertoli cells and individualized, shrunken spermatogonia with pyknotic nuclei, were observed at 3 dpi. At 5 dpi, the spermatogenic columns were disorganized, and there were fewer cells, which were replaced by necrotic cells, lipid vacuoles, and proteinaceous homogenous material. A significant decrease in the plasma concentrations of testosterone and luteinizing hormone (LH) and the mRNA expression of their receptors in the testes, steroidogenic acute regulatory protein, cytochrome P450 side-chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase in the NDV-infected group was observed relative to those in the control group (P < 0.05). Collectively, these results indicate that NDV infection induces a severe inflammatory response and histological changes, which decrease the steroidogenesis.
Collapse
Affiliation(s)
- Zaib Ur Rehman
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China.,Department of Poultry Science, Faculty of Veterinary and Animal Sciences, PMAS Arid Agriculture University, 46300, Rawalpindi, Pakistan
| | - Shanhui Ren
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Bin Yang
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Xiaofeng Yang
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Salman Latif Butt
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Alia Afzal
- Institute of Statistics, Faculty of Economics and Management, Leibniz University Hannover, 30167, Hannover, Germany
| | - Muhammad Irfan Malik
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Chunchun Meng
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
8
|
Tran GTH, Sultan S, Osman N, Hassan MI, VAN Dong H, Dao TD, Omatsu T, Katayama Y, Mizutani T, Takeda Y, Ogawa H, Imai K. Molecular characterization of full genome sequences of Newcastle disease viruses circulating among vaccinated chickens in Egypt during 2011-2013. J Vet Med Sci 2020; 82:809-816. [PMID: 32307343 PMCID: PMC7324829 DOI: 10.1292/jvms.19-0623] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although intensive vaccination programs have been implemented, Newcastle disease (ND)
outbreaks, accompanied by severe economic losses, are still reported in Egypt. The genetic
characterization of ND virus (NDV) strains isolated from ND-vaccinated chicken flocks
provides essential information for improving ND control strategies. Therefore, here, 38
NDV strains were isolated and identified from outbreaks among vaccinated flocks of broiler
chickens located in the provinces of Qena, Luxor, and Aswan of Upper Egypt during
2011–2013. The investigated broiler chicken flocks (aged 28 to 40 days) had high mortality
rates of up to 80%. All NDV isolates were genetically analyzed using next-generation DNA
sequencing. From these isolates, 10 representative NDV strains were selected for further
genetic analyses. Phylogenetic analysis of full-length coding genes revealed that the
Egyptian NDV isolates belonged to a single sub-genotype, VII.1.1. These isolates were
phylogenetically distant from the vaccine strains, including La Sota or Clone 30 (genotype
II), which have been commonly used to vaccinate chicken flocks. Amino acid substitution
K78R was observed in the neutralizing epitopes of the F proteins; whereas several
mutations were found in the neutralizing epitopes of the hemagglutinin-neuraminidase
proteins, notably, E347K. Overall, our results suggested that the occurrence of
neutralizing epitope variants may be one of potential reasons for ND outbreaks. Further
studies are needed to determine the protective effect of current vaccines against
circulating virulent NDV strains.
Collapse
Affiliation(s)
- Giang Thi Huong Tran
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan.,United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Town, Gia Lam District, Hanoi, Vietnam
| | - Serageldeen Sultan
- Department of Microbiology, Virology Division, Faculty of Veterinary Medicine, South Valley University, 83523, Qena, Egypt
| | - Nabila Osman
- Department of Poultry Diseases, Faculty of Veterinary Medicine, South Valley University, 83523, Qena, Egypt
| | - Mohamed Ismail Hassan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 83911, Luxor, Egypt
| | - Hieu VAN Dong
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan.,United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Town, Gia Lam District, Hanoi, Vietnam
| | - Tung Duy Dao
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan.,National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Vietnam
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan.,United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Kunitoshi Imai
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
9
|
Sultan HA, Talaat S, Elfeil WK, Selim K, Kutkat MA, Amer SA, Choi KS. Protective efficacy of the Newcastle disease virus genotype VII-matched vaccine in commercial layers. Poult Sci 2020; 99:1275-1286. [PMID: 32111305 PMCID: PMC7587656 DOI: 10.1016/j.psj.2019.10.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/24/2019] [Accepted: 10/31/2019] [Indexed: 01/16/2023] Open
Abstract
Newcastle disease virus (NDV) is a major threat to the poultry industry worldwide, with a diversity of genotypes associated with severe economic losses in all poultry sectors. Class II genotype VII NDV are predominant in the Middle East and Asia, despite intensive vaccination programs using conventional live and inactivated NDV vaccines. In Egypt, the disease is continuously spreading, causing severe economical losses in the poultry industry. In this study; the protective efficacy of a commercial, inactivated recombinant genotype VII NDV–matched vaccine (KBNP-C4152R2L strain) against challenge with the velogenic NDV strain (Chicken/USC/Egypt/2015) was evaluated in commercial layers. Two vaccination regimes were used; live NDV genotype II (LaSota) vaccine on days 10, 18, and 120, with either the inactivated NDV genotype II regime or inactivated NDV genotype VII–matched vaccine regime on days 14, 42, and 120. The 2 regimes were challenged at the peak of egg production on week 26. Protection by the 2 regimes was evaluated after experimental infection, based on mortality rate, clinical signs, gross lesions, virus shedding, seroconversion, and egg production schedule. The results show that these 2 vaccination regimes protected commercial layer chickens against mortality, but some birds showed mild clinical signs and reduced egg production temporarily. However, the combination of live NDV genotype II and recombinant inactivated genotype VII vaccines provided better protection against virus shedding (20% and 0% vs. 60% and 40%) as assessed in tracheal swabs and (20% and 0% vs. 20% and 20%) in cloacal swabs collected at 3 and 5 D post challenge (dpc), respectively. In addition, egg production levels in birds receiving the inactivated NDV genotype VII–matched vaccine regime and in those given inactivated genotype II vaccines were 76.6, 79, 82, and 87.4% and 77.7, 72.5, 69, and 82.5% at 7, 14, 21, and 28 dpc, respectively. The results of this study indicate that recombinant genotype-matched inactivated vaccine along with a live attenuated vaccine can reduce virus shedding and improve egg production in commercial layers challenged with a velogenic genotype VII virus under field conditions. This regime may ensure a proper control strategy in layers.
Collapse
Affiliation(s)
- Hesham A Sultan
- Department of Birds and Rabbits Medicine, Faculty of Veterinary Medicine, Sadat City University, Menoufiya 32958, Egypt; Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea.
| | - Shaimaa Talaat
- Department of Birds and Rabbits Medicine, Faculty of Veterinary Medicine, Sadat City University, Menoufiya 32958, Egypt
| | - Wael K Elfeil
- Avian and Rabbit Medicine Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Karim Selim
- Virology Division, Animal Health Research Institute, Agriculture Research Centre, Dokki, Egypt
| | - Mohamed A Kutkat
- Veterinary Research Division, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Sameh A Amer
- Veterinary Research Division, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Kang-Seuk Choi
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| |
Collapse
|
10
|
Gao X, Xu K, Yang G, Shi C, Huang H, Wang J, Yang W, Liu J, Liu Q, Kang Y, Jiang Y, Wang C. Construction of a novel DNA vaccine candidate targeting F gene of genotype VII Newcastle disease virus and chicken IL-18 delivered by Salmonella. J Appl Microbiol 2019; 126:1362-1372. [PMID: 30785663 DOI: 10.1111/jam.14228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 11/30/2022]
Abstract
AIMS Genotype VII Newcastle disease (ND) is one of the most epidemic and serious infectious diseases in the poultry industry. A novel vaccine targeting VII Newcastle disease virus (NDV) is still proving elusive. METHODS AND RESULTS In this study, we constructed regulated delayed lysis Salmonella strains expressing either a fusion protein (F) alone under an eukaryotic CMV promoter or together with chicken IL-18 (chIL-18) as a molecular adjuvant under prokaryotic Ptrc promoter, named pYL1 and pYL23 respectively. Oral immunization with recombinant strains induced NDV-specific serum IgG antibodies in both pYL1- and pYL23-immunized chickens. The presence of chIL-18 significantly increased lymphocyte proliferation in immunized chickens, as well as the percentages of CD3+ CD4+ and CD3+ CD8+ T cells in serum, even if a statistically significant difference did not exist. After a virulent challenge, pYL23 immunization provided about 80% protection at day 10 postinfection, compared with 60% of protection offered by pYL1 immunization and 100% protection in the inactivated vaccine group, indicating the enhanced immune response provided by chIL-18, which was also confirmed by histochemical analysis. CONCLUSIONS Recombinant lysis Salmonella-vectored DNA vaccine could provide us a novel potential option for controlling NDV infection. SIGNIFICANCE AND IMPACT OF THE STUDY This study took use of a regulated delayed lysis Salmonella vector for the design of an orally administrated vaccine against NDV.
Collapse
Affiliation(s)
- X Gao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - K Xu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - G Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - C Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - H Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - J Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - W Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - J Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Q Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Y Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Y Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - C Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
11
|
Triosanti LS, Wibowo MH, Widayanti R. Molecular characterization of hemagglutinin-neuraminidase fragment gene of Newcastle disease virus isolated from periodically-vaccinated farms. Vet World 2018; 11:657-666. [PMID: 29915505 PMCID: PMC5993761 DOI: 10.14202/vetworld.2018.657-666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/19/2018] [Indexed: 01/23/2023] Open
Abstract
Background and Aim: Newcastle disease (ND) caused by avian paramyxovirus serotype-1 (APMV-1) is long known as an acute contagious and infectious disease of various bird species. Prior studies have acknowledged that the virus could cause up to 100% morbidity and mortality as well as reducing eggs production. In theory, hemagglutinin-neuraminidase (HN) in ND virus (NDV) is one of the surface glycoproteins that functions during the attachment, assembly, and maturation of the virus. On the fields, Indonesia has been recognized as an endemic country for ND where continuous outbreaks of ND in commercial chicken farms have been reported despite the implementation of periodical vaccination programs. Thus, this study aims at characterizing NDV isolated from periodically vaccinated commercial farms, comparing its genetic correlation based on their HN gene fragment with registered NDV originated from Indonesia as well as with existing vaccine strains. Materials and Methods: The HN gene fragment of NDV isolated from well-vaccinated farms was amplified using primer pairs of forward 5’ GTGAGTGCAACCCCTTTAGGTTGT 3’ and reverse 3’ TAGACCCCAGTGATGCATGAGTTG 3’ with a 694 bp product length. The nucleotide sequences of nine samples, which were gathered from Kulon Progo, Gunung Kidul (2), Boyolali (2), Magelang, Muntilan (2), Palembang, and Medan, were later compared with the sequences of HN gene of NDV available in NCBI Genbank database. The amino acid sequence analysis and multiple sequence alignment were conducted using the Mega7 program. Result: The data analysis on amino acid sequences showed that the structure of amino acid residue at positions 345-353 for all isolates appears to be PDEQDYQIR. The structure is the same as for archived samples from Indonesia and either LaSota or B1 vaccine strains. The amino acid distance between observed isolates and LaSota vaccine strain is 8.2-8.8% with a homology value at 91.2-91.7%. Conclusion: Looking at amino acid sequence analysis, LaSota vaccines can considerably be stated as being protective against ND disease outbreak. However, the distant homology value from a perfect condition for the protection might have acted as the root cause of vaccination failures.
Collapse
Affiliation(s)
- Lucia S Triosanti
- Department of Microbiology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Michael Haryadi Wibowo
- Department of Microbiology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Rini Widayanti
- Department of Biochemistry, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
12
|
Taylor TL, Miller PJ, Olivier TL, Montiel E, Cardenas Garcia S, Dimitrov KM, Williams-Coplin D, Afonso CL. Repeated Challenge with Virulent Newcastle Disease Virus Does Not Decrease the Efficacy of Vaccines. Avian Dis 2017; 61:245-249. [DOI: 10.1637/11555-120816-resnote.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tonya L. Taylor
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA
| | - Patti J. Miller
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA
| | - Timothy L. Olivier
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA
| | - Enrique Montiel
- Merial Select Inc., 1168 Airport Parkway, Gainesville, GA 30501
| | - Stivalis Cardenas Garcia
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA
- Department of Veterinary Pathology, College of Veterinary Medicine, The University of Georgia, 501 D. W. Brooks Drive, Athens, GA
| | - Kiril M. Dimitrov
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA
| | - Dawn Williams-Coplin
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA
| | - Claudio L. Afonso
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA
| |
Collapse
|