1
|
Su H, Wang Z, Zhou L, Liu D, Zhang N. Regulation of the Nrf2/HO-1 axis by mesenchymal stem cells-derived extracellular vesicles: implications for disease treatment. Front Cell Dev Biol 2024; 12:1397954. [PMID: 38915448 PMCID: PMC11194436 DOI: 10.3389/fcell.2024.1397954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
This comprehensive review inspects the therapeutic potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) across multiple organ systems. Examining their impact on the integumentary, respiratory, cardiovascular, urinary, and skeletal systems, the study highlights the versatility of MSC-EVs in addressing diverse medical conditions. Key pathways, such as Nrf2/HO-1, consistently emerge as central mediators of their antioxidative and anti-inflammatory effects. From expediting diabetic wound healing to mitigating oxidative stress-induced skin injuries, alleviating acute lung injuries, and even offering solutions for conditions like myocardial infarction and renal ischemia-reperfusion injury, MSC-EVs demonstrate promising therapeutic efficacy. Their adaptability to different administration routes and identifying specific factors opens avenues for innovative regenerative strategies. This review positions MSC-EVs as promising candidates for future clinical applications, providing a comprehensive overview of their potential impact on regenerative medicine.
Collapse
Affiliation(s)
- Hua Su
- Xingyi People’s Hospital, Xingyi, China
| | | | - Lidan Zhou
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dezhi Liu
- Xingyi People’s Hospital, Xingyi, China
| | | |
Collapse
|
2
|
Motta LCB, Pereira VM, Pinto PAF, Mançanares CAF, Pieri NCG, de Oliveira VC, Fantinato-Neto P, Ambrósio CE. 3D culture of mesenchymal stem cells from the yolk sac to generate intestinal organoid. Theriogenology 2023; 209:98-106. [PMID: 37379588 DOI: 10.1016/j.theriogenology.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Organoids are in vitro models that originated from the three-dimensional culture of stem cells with the ability to reproduce part of the in vivo structural and functional specificities of body organs. Intestinal organoids have great relevance in cell therapy, as they provide more accurate information about tissue composition and architecture in relation to two-dimensional culture, in addition to serving as a study model for host interaction and drug testing. The yolk sac (YS) is a promising source of mesenchymal stem cells (MSCs), which are multipotent stem cells with self-renewal ability and potential to differentiated into mesenchymal lineages. Besides this, the YS is responsible for the formation of intestinal epithelium during embryonic development. Thus, the aim of this study was to verify if the three-dimensional in vitro culture of stem cells derived from the canine YS is capable of developing intestinal organoids. MSCs from the canine YS and gut cells were isolated and characterized, then three-dimensionally cultured in Matrigel. In both cells lineages, spherical organoids were observed and after 10 days the gut cells formed crypt-like buds and villus-like structures. Despite having the same induction of differentiation process and having the expression of intestinal markers, the MSC from the YS morphology was not in the form of crypt budding. The hypothesis is that these cells could generate structures equivalent to the intestinal organoids of the colon that other studies showed formed only spherical structures. The culture of MSC from the YS, as well as the establishment of protocols for 3D cultivation of this tissue, is relevant, as it will serve as a tool in various applications in basic and scientific biology.
Collapse
Affiliation(s)
- Lina Castelo Branco Motta
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, Brazil; Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, São Paulo, Brazil; Graduate Program in Translational Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Vitória Mattos Pereira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, Brazil; School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Priscilla Avelino Ferreira Pinto
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, Brazil; Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Celina Almeida Furlanetto Mançanares
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Naira Caroline Godoi Pieri
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Vanessa Cristina de Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Paulo Fantinato-Neto
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, Brazil.
| |
Collapse
|
3
|
Jang HW, An JH, Kim KB, Lee JH, Oh YI, Park SM, Chae HK, Youn HY. Canine peripheral blood mononuclear cell-derived B lymphocytes pretreated with lipopolysaccharide enhance the immunomodulatory effect through macrophage polarization. PLoS One 2021; 16:e0256651. [PMID: 34807933 PMCID: PMC8608335 DOI: 10.1371/journal.pone.0256651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Preconditioning with lipopolysaccharide (LPS) is used to improve the secretion of anti-inflammatory agents in B cells. However, there are only a few studies on canine B cells. OBJECTIVE This study aimed to evaluate the immune regulatory capacity of canine peripheral blood mononuclear cell-derived B cells pretreated with LPS. METHODS Canine B cells were isolated from canine peripheral blood mononuclear cells, which were obtained from three healthy canine donors. The B cells were preconditioned with LPS, and then cell viability and the expression of the regulatory B cell marker were assessed. Finally, RNA extraction and immunofluorescence analysis were performed. RESULTS LPS primed B cells expressed the interleukin (IL)-10 surface marker and immunoregulatory gene expression, such as IL-10, programmed death-ligand 1, and transforming growth factor beta. Macrophages in the inflammatory condition cocultured with primed B cells were found to have significantly down-regulated pro-inflammatory cytokine, such as tumor necrosis factor-α, and up-regulated anti-inflammatory cytokines such as IL-10. Additionally, it was revealed that co-culture with primed B cells re-polarized M1 macrophages to M2 macrophages. CONCLUSIONS This study revealed that LPS-primed B cells have an anti-inflammatory effect and can re-polarize macrophages, suggesting the possibility of using LPS-primed B cells as a therapeutic agent for its anti-inflammatory effects and immune modulation.
Collapse
Affiliation(s)
- Hee-Won Jang
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hyun An
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyeong Bo Kim
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hwa Lee
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ye-In Oh
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Su-Min Park
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Kyu Chae
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Shahid MA, Kim WH, Kweon OK. Cryopreservation of heat-shocked canine adipose-derived mesenchymal stromal cells with 10% dimethyl sulfoxide and 40% serum results in better viability, proliferation, anti-oxidation, and in-vitro differentiation. Cryobiology 2019; 92:92-102. [PMID: 31785238 DOI: 10.1016/j.cryobiol.2019.11.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
Cryopreserved canine adipose-derived mesenchymal stromal cells (Ad-MSCs) can be used instantly in dogs for clinical uses. However, cryopreservation results in a reduction of the cellular viability, proliferation, and anti-oxidation of post-thawed Ad-MSCs. Therefore, there is a need for in-vitro procedure to improve post-thawed Ad-MSCs' viability, proliferation, anti-oxidation, and differentiation capacity. In this study, fresh-Ad-MSCs were activated with heat shock, hypoxia (5% O2), or hypoxia (5% O2) + heat shock treatments. The results showed that compared to the other treatments, heat shock significantly improved the proliferation rate, anti-oxidation, heat shock proteins and growth factors expressions of canine-fresh-Ad-MSCs. Consequently, fresh-Ad-MSCs were heat-shocked and then cryopreserved with different combinations of dimethyl sulfoxide (Me2SO) and fetal bovine serum (FBS) to determine the combination that could effectively preserve the cellular viability, proliferation, anti-oxidation and differentiation capacity of Ad-MSCs after cryopreservation. We found that C-HST-Ad-MSCs cryopreserved with 10% Me2SO + 40% FBS presented significantly (p < 0.05) improved cellular viability, proliferation rate, anti-oxidant capacity, and differentiation potential as compared to C-HST-Ad-MSCs cryopreserved with 1% Me2SO + 10% FBS or 1% Me2SO alone or control. We concluded, heat shock treatment is much better to enhance the characteristics of fresh-Ad-MSCs than other treatments, moreover, C-HST-Ad-MSCs in 10% Me2SO + 40% FBS showed better results compared to other cryopreserved groups. However, future work is required to optimize the expression of heat shock proteins, which would further improve the characteristics of fresh- and cryopreserved-HST-Ad-MSCs and reduce the dependency on Me2SO and FBS.
Collapse
Affiliation(s)
- Muhammad Afan Shahid
- Research Institute for Veterinary Science and College of Veterinary Medicine Building 85, Room 623, Seoul National University, Gwanak-gu, Gwanak-ro 1, Seoul, 08826, South Korea.
| | - Wan Hee Kim
- Research Institute for Veterinary Science and College of Veterinary Medicine Building 85, Room 623, Seoul National University, Gwanak-gu, Gwanak-ro 1, Seoul, 08826, South Korea.
| | - Oh-Kyeong Kweon
- Research Institute for Veterinary Science and College of Veterinary Medicine Building 85, Room 623, Seoul National University, Gwanak-gu, Gwanak-ro 1, Seoul, 08826, South Korea.
| |
Collapse
|
5
|
Therapeutic Effects of Intravenous Injection of Fresh and Frozen Thawed HO-1-Overexpressed Ad-MSCs in Dogs with Acute Spinal Cord Injury. Stem Cells Int 2019; 2019:8537541. [PMID: 31481975 PMCID: PMC6701425 DOI: 10.1155/2019/8537541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/27/2019] [Indexed: 12/31/2022] Open
Abstract
Owing to the antioxidant and anti-inflammatory functions of hemeoxygenase-1 (HO-1), HO-1-expressing canine adipose-derived mesenchymal stem cells (Ad-MSCs) could be efficacious in treating spinal cord injury (SCI). Further, frozen thawed HO-1 Ad-MSCs could be instantly available as an emergency treatment for SCI. We compared the effects of intravenous treatment with freshly cultured HO-1 Ad-MSCs (HO-1 MSCs), only green fluorescent protein-expressing Ad-MSCs (GFP MSCs), and frozen thawed HO-1 Ad-MSCs (FT-HO-1 MSCs) in dogs with acute SCI. For four weeks, dogs were evaluated for improvement in hind limb locomotion using a canine Basso Beattie Bresnahan (cBBB) score. Upon completion of the study, injured spinal cord segments were harvested and used for western blot and histopathological analyses. All cell types had migrated to the injured spinal cord segment. The group that received HO-1 MSCs showed significant improvement in the cBBB score within four weeks. This group also showed significantly higher expression of NF-M and reduced astrogliosis. There was reduced expression of proinflammatory cytokines (IL6, TNF-α, and IL-1β) and increased expression of anti-inflammatory markers (IL-10, HO-1) in the HO-1 MSC group. Histopathological assessment revealed decreased fibrosis at the epicenter of the lesion and increased myelination in the HO-1 MSC group. Together, these data suggest that HO-1 MSCs could improve hind limb function by increasing the anti-inflammatory reaction, leading to neural sparing. Further, we found similar results between GFP MSCs and FT-HO-1 MSCs, which suggest that FT-HO-1 MSCs could be used as an emergency treatment for SCI.
Collapse
|
6
|
Khan IU, Yoon Y, Kim A, Jo KR, Choi KU, Jung T, Kim N, Son Y, Kim WH, Kweon OK. Improved Healing after the Co-Transplantation of HO-1 and BDNF Overexpressed Mesenchymal Stem Cells in the Subacute Spinal Cord Injury of Dogs. Cell Transplant 2018; 27:1140-1153. [PMID: 29909686 PMCID: PMC6158544 DOI: 10.1177/0963689718779766] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abundant expression of proinflammatory cytokines after a spinal cord injury (SCI) creates an inhibitory microenvironment for neuroregeneration. The mesenchymal stem cells help to mitigate the inflammation and improve neural growth and survival. For this purpose, we potentiated the function of adipose-derived mesenchymal stem cells (Ad-MSCs) by transfecting them with brain-derived neurotrophic factor (BDNF) and heme oxygenase-1 (HO-1), through a lentivirus, to produce BDNF overexpressed Ad-MSCs (BDNF-MSCs), and HO-1 overexpressed Ad-MSCs (HO-1-MSCs). Sixteen SCI beagle dogs were randomly assigned into four treatment groups. We injected both HO-1 and BDNF-overexpressed MSCs as a combination group, to selectively control inflammation and induce neuroregeneration in SCI dogs, and compared this with BDNF-MSCs, HO-1-MSCs, and GFP-MSCs injected dogs. The groups were compared in terms of improvement in canine Basso, Beattie, and Bresnahan (cBBB) score during 8 weeks of experimentation. After 8 weeks, spinal cords were harvested and subjected to western blot analysis, immunofluorescent staining, and hematoxylin and eosin (H&E) staining. The combination group showed a significant improvement in hindlimb functions, with a higher BBB score, and a robust increase in neuroregeneration, depicted by a higher expression of Tuj-1, NF-M, and GAP-43 due to a decreased expression of the inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), and an increased expression of interleukin-10 (IL-10) (P ≤ 0.05). H&E staining showed more reduced intraparenchymal fibrosis in the combination group than in other groups (P ≤ 0.05). It was thus suggested that the cotransplantation of HO-1 and BDNF-MSCs is more effective in promoting the healing of SCI. HO-1-MSCs reduce inflammation, which favors BDNF-induced neuroregeneration in SCI of dogs.
Collapse
Affiliation(s)
- Imdad Ullah Khan
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Yongseok Yoon
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Ahyoung Kim
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Kwang Rae Jo
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Kyeung Uk Choi
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Taeseong Jung
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Namyul Kim
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - YeonSung Son
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Wan Hee Kim
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Oh-Kyeong Kweon
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| |
Collapse
|
7
|
Lee SH, Kim Y, Rhew D, Kim A, Jo KR, Yoon Y, Choi KU, Jung T, Kim WH, Kweon OK. Effect of canine mesenchymal stromal cells overexpressing heme oxygenase-1 in spinal cord injury. J Vet Sci 2018; 18:377-386. [PMID: 27586469 PMCID: PMC5639091 DOI: 10.4142/jvs.2017.18.3.377] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/04/2016] [Accepted: 08/26/2016] [Indexed: 01/04/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is a stress-responsive enzyme that modulates the immune response and oxidative stress associated with spinal cord injury (SCI). This study aimed to investigate neuronal regeneration via transplantation of mesenchymal stromal cells (MSCs) overexpressing HO-1. Canine MSCs overexpressing HO-1 were generated by using a lentivirus packaging protocol. Eight beagle dogs with experimentally-induced SCI were divided into GFP-labeled MSC (MSC-GFP) and HO-1-overexpressing MSC (MSC-HO-1) groups. MSCs (1 × 107 cells) were transplanted at 1 week after SCI. Spinal cords were harvested 8 weeks after transplantation, after which histopathological, immunofluorescence, and western blot analyses were performed. The MSC-HO-1 group showed significantly improved functional recovery at 7 weeks after transplantation. Histopathological results showed fibrotic changes and microglial cell infiltration were significantly decreased in the MSC-HO-1 group. Immunohistochemical (IHC) results showed significantly increased expression levels of HO-1 and neuronal markers in the MSC-HO-1 group. Western blot results showed significantly decreased expression of tumor necrosis factor-alpha, interleukin-6, cycloogygenase 2, phosphorylated-signal transducer and activator of transcription 3, and galactosylceramidase in the MSC-HO-1 group, while expression levels of glial fibrillary acidic protein, β3-tubulin, neurofilament medium, and neuronal nuclear antigen were similar to those observed in IHC results. Our results demonstrate that functional recovery after SCI can be promoted to a greater extent by transplantation of HO-1-overexpressing MSCs than by normal MSCs.
Collapse
Affiliation(s)
- Seung Hoon Lee
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08872, Korea
| | - Yongsun Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08872, Korea
| | - Daeun Rhew
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08872, Korea
| | - Ahyoung Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08872, Korea
| | - Kwang Rae Jo
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08872, Korea
| | - Yongseok Yoon
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08872, Korea
| | - Kyeung Uk Choi
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08872, Korea
| | - Taeseong Jung
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08872, Korea
| | - Wan Hee Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08872, Korea
| | - Oh-Kyeong Kweon
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08872, Korea
| |
Collapse
|
8
|
Different Bone Healing Effects of Undifferentiated and Osteogenic Differentiated Mesenchymal Stromal Cell Sheets in Canine Radial Fracture Model. Tissue Eng Regen Med 2017; 15:115-124. [PMID: 30603539 PMCID: PMC6171633 DOI: 10.1007/s13770-017-0092-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 02/08/2023] Open
Abstract
Cell sheets technology is being available for fracture healing. This study was performed to clarify bone healing mechanism of undifferentiated (UCS) and osteogenic (OCS) differentiated mesenchymal stromal cell (MSC) sheets in the fracture model of dogs. UCS and OCS were harvested at 10 days of culture. Transverse fractures at the radius of six beagle dogs were assigned into three groups (n = 4 in each group) i.e. UCS, OCS and control. The fractures were fixed with a 2.7 mm locking plate and six screws. Cell sheets were wrapped around the fracture site. Bones were harvested 8 weeks after operation, then scanned by micro-computed tomography (micro-CT) and analyzed histopathologically. The micro-CT revealed different aspects of bone regeneration among the groups. The percentages of external callus volume out of total bone volume in control, UCS, and OCS groups were 42.1, 13.0 and 4.9% (p < 0.05) respectively. However, the percentages of limbs having connectivity of gaps were 25, 12.5 and 75% respectively. In histopathological assessments, OCS group showed well organized and mature woven bone with peripheral cartilage at the fracture site, whereas control group showed cartilage formation without bone maturation or ossification at the fracture site. Meanwhile, fracture site was only filled with fibrous connective tissue without endochondral ossification and bone formation in UCS group. It was suggested that the MSC sheets reduced the quantity of external callus, and OCS induced the primary bone healing.
Collapse
|