1
|
Kobayashi N, Iwaide S, Fukui H, Une Y, Itoh Y, Hisada M, Murakami T. Apolipoprotein C-III amyloidosis in white lions ( Panthera leo). Vet Pathol 2024; 61:574-581. [PMID: 38345009 DOI: 10.1177/03009858241230100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Apolipoprotein C-III (ApoC-III) amyloidosis in humans is a hereditary amyloidosis caused by a D25V mutation in the APOC3 gene. This condition has only been reported in a French family and not in animals. We analyzed a 19-year-old white lion (Panthera leo) that died in a Japanese safari park and found renal amyloidosis characterized by severe deposition confined to the renal corticomedullary border zone. Mass spectrometry-based proteomic analysis identified ApoC-III as a major component of renal amyloid deposits. Amyloid deposits were also positive for ApoC-III by immunohistochemistry. Based on these results, this case was diagnosed as ApoC-III amyloidosis for the first time in nonhuman animals. Five additional white lions were also tested for amyloid deposition retrospectively. ApoC-III amyloid deposition was detected in 3 white lions aged 19 to 21 years but not in 2 cases aged 0.5 and 10 years. Genetic analysis of white and regular-colored lions revealed that the APOC3 sequences of the lions were identical, regardless of amyloid deposition. These results suggest that ApoC-III amyloidosis in lions, unlike in humans, may not be a hereditary condition but an age-related condition. Interestingly, lion ApoC-III has a Val30 substitution compared with other species of Panthera that have Met30. Structural predictions suggest that the conformation of ApoC-III with Met30 and ApoC-III with Val30 are almost identical, but this substitution may alter the ability to bind to lipids. As with the D25V mutation in human ApoC-III, the Val30 substitution in lions may increase the proportion of free ApoC-III, leading to amyloid formation.
Collapse
Affiliation(s)
| | - Susumu Iwaide
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | - Hiroto Fukui
- Okayama University of Science, Imabari-shi, Japan
| | - Yumi Une
- Okayama University of Science, Imabari-shi, Japan
| | - Yoshiyuki Itoh
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | - Miki Hisada
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | - Tomoaki Murakami
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| |
Collapse
|
2
|
Moccia V, Vogt AC, Ricagno S, Callegari C, Vogel M, Zini E, Ferro S. Histological evaluation of the distribution of systemic AA-amyloidosis in nine domestic shorthair cats. PLoS One 2023; 18:e0293892. [PMID: 37917747 PMCID: PMC10621960 DOI: 10.1371/journal.pone.0293892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Amyloidosis is a group of protein-misfolding disorders characterized by the accumulation of amyloid in organs, both in humans and animals. AA-amyloidosis is considered a reactive type of amyloidosis and in humans is characterized by the deposition of AA-amyloid fibrils in one or more organs. In domestic shorthair cats, AA-amyloidosis was recently reported to be frequent in shelters. To better characterize this pathology, we report the distribution of amyloid deposits and associated histological lesions in the organs of shelter cats with systemic AA-amyloidosis. AA-amyloid deposits were identified with Congo Red staining and immunofluorescence. AA-amyloid deposits were then described and scored, and associated histological lesions were reported. Based on Congo Red staining and immunofluorescence nine shelter cats presented systemic AA-amyloidosis. The kidney (9/9), the spleen (8/8), the adrenal glands (8/8), the small intestine (7/7) and the liver (8/9) were the organs most involved by amyloid deposits, with multifocal to diffuse and from moderate to severe deposits, both in the organ parenchyma and/or in the vascular compartment. The lung (2/9) and the skin (1/8) were the least frequently involved organs and deposits were mainly focal to multifocal, mild, vascular and perivascular. Interestingly, among the organs with fibril deposition, the stomach (7/9), the gallbladder (6/6), the urinary bladder (3/9), and the heart (6/7) were reported for the first time in cats. All eye, brain and skeletal muscle samples had no amyloid deposits. An inflammatory condition was identified in 8/9 cats, with chronic enteritis and chronic nephritis being the most common. Except for secondary cell compression, other lesions were not associated to amyloid deposits. To conclude, this study gives new insights into the distribution of AA-amyloid deposits in cats. A concurrent chronic inflammation was present in almost all cases, possibly suggesting a relationship with AA-amyloidosis.
Collapse
Affiliation(s)
- Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, PD, Italy
| | - Anne-Cathrine Vogt
- Department for BioMedical Research, Faculty of Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Stefano Ricagno
- Department of Biosciences, University of Milano, Milano, MI, Italy
| | | | - Monique Vogel
- Department for BioMedical Research, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Eric Zini
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, PD, Italy
- AniCura Istituto Veterinario Novara, Granozzo con Monticello, NO, Italy
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, PD, Italy
| |
Collapse
|
3
|
Ferri F, Ferro S, Porporato F, Callegari C, Guglielmetti C, Mazza M, Ferrero M, Crinò C, Gallo E, Drigo M, Coppola LM, Gerardi G, Schulte TP, Ricagno S, Vogel M, Storni F, Bachmann MF, Vogt AC, Caminito S, Mazzini G, Lavatelli F, Palladini G, Merlini G, Zini E. AA-amyloidosis in cats (Felis catus) housed in shelters. PLoS One 2023; 18:e0281822. [PMID: 36989207 PMCID: PMC10057811 DOI: 10.1371/journal.pone.0281822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/31/2023] [Indexed: 03/30/2023] Open
Abstract
Systemic AA-amyloidosis is a protein-misfolding disease characterized by fibril deposition of serum amyloid-A protein (SAA) in several organs in humans and many animal species. Fibril deposits originate from abnormally high serum levels of SAA during chronic inflammation. A high prevalence of AA-amyloidosis has been reported in captive cheetahs and a horizontal transmission has been proposed. In domestic cats, AA-amyloidosis has been mainly described in predisposed breeds but only rarely reported in domestic short-hair cats. Aims of the study were to determine AA-amyloidosis prevalence in dead shelter cats. Liver, kidney, spleen and bile were collected at death in cats from 3 shelters. AA-amyloidosis was scored. Shedding of amyloid fibrils was investigated with western blot in bile and scored. Descriptive statistics were calculated. In the three shelters investigated, prevalence of AA-amyloidosis was 57.1% (16/28 cats), 73.0% (19/26) and 52.0% (13/25), respectively. In 72.9% of cats (35 in total) three organs were affected concurrently. Histopathology and immunofluorescence of post-mortem extracted deposits identified SAA as the major protein source. The duration of stay in the shelters was positively associated with a histological score of AA-amyloidosis (B = 0.026, CI95% = 0.007-0.046; p = 0.010). AA-amyloidosis was very frequent in shelter cats. Presence of SAA fragments in bile secretions raises the possibility of fecal-oral transmission of the disease. In conclusion, AA-amyloidosis was very frequent in shelter cats and those staying longer had more deposits. The cat may represent a natural model of AA-amyloidosis.
Collapse
Affiliation(s)
- Filippo Ferri
- AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
- Studio Veterinario Associato Vet2Vet di Ferri e Porporato, Orbassano, Torino, Italy
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padova, Italy
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Sciences, University of Padova, Legnaro, Padova, Italy
| | - Federico Porporato
- AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
- Studio Veterinario Associato Vet2Vet di Ferri e Porporato, Orbassano, Torino, Italy
| | - Carolina Callegari
- AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
| | - Chiara Guglielmetti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, SC Diagnostica Specialistica, Torino, Italy
| | - Maria Mazza
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, SC Diagnostica Specialistica, Torino, Italy
| | - Marta Ferrero
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, SC Diagnostica Specialistica, Torino, Italy
| | - Chiara Crinò
- Department of Clinical Science and Services, The Royal Veterinary College, Hatfield, United Kingdom
| | - Enrico Gallo
- Department of Comparative Biomedicine and Food Sciences, University of Padova, Legnaro, Padova, Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padova, Italy
| | - Luigi Michele Coppola
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padova, Italy
| | - Gabriele Gerardi
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padova, Italy
| | - Tim Paul Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Milan, Italy
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Milan, Italy
- Departments of Biosciences, La Statale, University of Milan, Milan, Italy
| | - Monique Vogel
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Federico Storni
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, University Hospital of Bern, Bern, Switzerland
| | - Martin F Bachmann
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Anne-Cathrine Vogt
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Serena Caminito
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giulia Mazzini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | | | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Eric Zini
- AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padova, Italy
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Miyazaki S, Kobayashi Y, Kametani F, Kobayashi K, Iwaide S, Yanai T, Murakami T. Systemic amyloidosis derived from EFEMP1 in a captive Tsushima leopard cat. Vet Pathol 2021; 59:152-156. [PMID: 34763604 DOI: 10.1177/03009858211048650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In animals, most cases of systemic amyloidosis are of amyloid A type, and the other types of systemic amyloidoses are rare. This study analyzed systemic amyloidosis in a 15-year-old female Tsushima leopard cat. Amyloid deposits strongly positive for Congo red staining were observed in the arterial walls as well as the interstitium in multiple organs. Mass spectrometry-based proteomic analysis with laser microdissection of amyloid deposits identified epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) as a prime amyloidogenic protein candidate. Immunohistochemistry showed that the amyloid deposits were positive for the N-terminal region of EFEMP1. From these results, the present case was diagnosed as EFEMP1-derived amyloidosis. It is the first such case in an animal. EFEMP1-derived amyloidosis in humans has recently been reported as a systemic amyloidosis, and it is known as an age-related venous amyloidosis. The present case showed different characteristics from human EFEMP1-derived amyloidosis, including the amyloid deposition sites and the amyloidogenic region of the EFEMP1 protein, suggesting a different pathogenesis between Tsushima leopard cat and human EFEMP1-derived amyloidosis.
Collapse
Affiliation(s)
- Shinya Miyazaki
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yuki Kobayashi
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa, Japan
| | - Fuyuki Kametani
- Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Kyoko Kobayashi
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Susumu Iwaide
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tokuma Yanai
- Hiwa Museum for Natural History, Shobara City, Hiroshima, Japan
| | - Tomoaki Murakami
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
5
|
Lin X, Watanabe K, Kuragano M, Kurotaki Y, Nakanishi U, Tokuraku K. Dietary Intake of Rosmarinic Acid Increases Serum Inhibitory Activity in Amyloid A Aggregation and Suppresses Deposition in the Organs of Mice. Int J Mol Sci 2020; 21:E6031. [PMID: 32825797 PMCID: PMC7504104 DOI: 10.3390/ijms21176031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Serum amyloid A (SAA) is one of the most important precursor amyloid proteins and plays a vital step in AA amyloidosis, although the underlying aggregation mechanism has not been elucidated. Since SAA aggregation is a key step in this pathogenesis, inhibitors are useful to prevent and treat AA amyloidosis, serving as tools to investigate the pathogenic mechanism. In this study, we showed that rosmarinic acid (RA), which is a well-known inhibitor of the aggregation of amyloid β (Aβ), displayed inhibitory activity against SAA aggregation in vitro using a microliter-scale high-throughput screening (MSHTS) system with quantum-dot nanoprobes. Therefore, we evaluated the amyloid aggregation inhibitory activity of blood and the deposition of SAA in organs by feeding mice with Melissa officinalis extract (ME) containing RA as an active substance. Interestingly, the inhibitory activity of ME-fed mice sera for SAA and Aβ aggregation, measured with the MSHTS system, was higher than that of the control group. The amount of amyloid deposition in the organs of ME-fed mice was lower than that in the control group, suggesting that the SAA aggregation inhibitory activity of serum is associated with SAA deposition. These results suggest that dietary intake of RA-containing ME enhanced amyloid aggregation inhibitory activity of blood and suppressed SAA deposition in organs. This study also demonstrated that the MSHTS system could be applied to in vitro screening and to monitor comprehensive activity of metabolized foods adsorbed by blood.
Collapse
Affiliation(s)
- Xuguang Lin
- Graduate School of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan; (X.L.); (M.K.); (Y.K.); (U.N.)
| | - Kenichi Watanabe
- Department of Veterinary Medicine, Research Center of Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
| | - Masahiro Kuragano
- Graduate School of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan; (X.L.); (M.K.); (Y.K.); (U.N.)
| | - Yukina Kurotaki
- Graduate School of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan; (X.L.); (M.K.); (Y.K.); (U.N.)
| | - Ushio Nakanishi
- Graduate School of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan; (X.L.); (M.K.); (Y.K.); (U.N.)
- Yamada Science Foundation, Osaka 544-8666, Japan
| | - Kiyotaka Tokuraku
- Graduate School of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan; (X.L.); (M.K.); (Y.K.); (U.N.)
| |
Collapse
|