1
|
Galante L, Franco dos Santos DJ, Mikkonen E, Horak J, Stijepic Z, Demmelmair H, Vielhauer A, Koletzko B, Zaw HT, Htut W, Lummaa V, Lahdenperä M. Milk metabolite composition of a semi-captive population of Asian elephants. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240930. [PMID: 39479244 PMCID: PMC11522882 DOI: 10.1098/rsos.240930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 11/02/2024]
Abstract
Lack of maternal milk commonly leads to Asian elephant calves' death in captivity. Currently, available supplements seem inefficient. Hence, we aimed at characterizing the composition of Asian elephant milk to provide information on calves' nutritional needs. Seventy milk samples from 22 Asian elephants living in semi-captivity in their natural environment in Myanmar were collected. Samples were analysed through various techniques including liquid chromatography tandem mass spectrometry, gas chromatography-flame ionization detector, and bicinchoninic acid assay to determine total protein content and various metabolites. Associations with lactation stage (months postpartum) were investigated through repeated measure mixed models. We identified 160 compounds: 22 amino acids, 12 organic acids of the tricarboxylic acid cycle, 27 fatty acids, 15 acyl-carnitines and 84 phospholipids. The milk contained substantial amounts of free glutamate (median: 1727.9, interquartile range (IQR): 1278.4 µmol l-1) and free glycine (2541.7, IQR: 1704.1 µmol l-1). The fatty acid profile was mostly constituted by saturated fatty acids, particularly capric acid (40.1, IQR: 67.3 g l-1). Milk samples also contained high amounts of carnitines, phospholipids and organic acids. The wide array of metabolites identified and quantified, some of which present high concentrations in the milk from this species as opposed to other species, suggests underpinning physiological functions that might be crucial for the survival of Asian elephant calves.
Collapse
Affiliation(s)
- Laura Galante
- School of Medicine, Swansea University, SwanseaSA2 8PP, UK
- Department of Biology, University of Turku, TurkuFI-20014, Finland
| | | | | | - Jeannie Horak
- Department of Metabolic and Nutritional Medicine, Ludwig-Maximilians-University Munich, Medical Center, MunichD-80337, Germany
| | - Zorica Stijepic
- Department of Metabolic and Nutritional Medicine, Ludwig-Maximilians-University Munich, Medical Center, MunichD-80337, Germany
| | - Hans Demmelmair
- Department of Metabolic and Nutritional Medicine, Ludwig-Maximilians-University Munich, Medical Center, MunichD-80337, Germany
| | - Andrea Vielhauer
- Department of Metabolic and Nutritional Medicine, Ludwig-Maximilians-University Munich, Medical Center, MunichD-80337, Germany
| | - Berthold Koletzko
- Department of Metabolic and Nutritional Medicine, Ludwig-Maximilians-University Munich, Medical Center, MunichD-80337, Germany
| | | | - Win Htut
- Myanma Timber Enterprise, Yangon11011, Myanmar
| | - Virpi Lummaa
- Department of Biology, University of Turku, TurkuFI-20014, Finland
| | | |
Collapse
|
2
|
Li Y, Zhou L, Xiao L, Wang H, Wang G. Wheel Running During Pregnancy Alleviates Anxiety-and Depression-Like Behaviors During the Postpartum Period in Mice: The Roles of NLRP3 Neuroinflammasome Activation, Prolactin, and the Prolactin Receptor in the Hippocampus. Neurochem Res 2024; 49:2615-2635. [PMID: 38904910 DOI: 10.1007/s11064-024-04180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Despite the increase in the prevalence of postpartum depression among maternal disorder, its treatment outcomes remain suboptimal. Studies have shown that exercise can reduce postpartum depressive episodes in the mother, but the effects of exercise during pregnancy on maternal behavior and the potential mechanisms involved remain poorly understood. From the second day of pregnancy to the day of birth, dams exercised for 1 h a day by running on a controlled wheel. The maternal behaviors of the dams were assessed on postpartum day 2 to postpartum day 8. Chronic restraint stress was applied from postpartum day 2 to day 12. Blood was collected on postpartum days 3 and 8, then subjected to ELISA to determine the serum concentration of prolactin. The weight of each dam and the food intake were recorded. Anxiety- and depression-like behavioral tests were conducted, and hippocampal neuroinflammation and prolactin receptor levels were measured. The dams exhibited elevated levels of anxiety and depression, decreased serum prolactin levels, decreased prolactin receptor expression, and activation of NLRP3-mediated neuroinflammation in the hippocampus following the induction of postpartum chronic restraint stress, which were reversed with controlled wheel running during pregnancy. Overall, the findings of this study revealed that the preventive effects of exercise during pregnancy on postpartum anxiety-and depression-like behaviors were accompanied by increased serum prolactin levels, hippocampal prolactin receptor expression and hippocampal NLRP3-mediated neuroinflammation.
Collapse
Affiliation(s)
- Yixin Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China
| | - Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China.
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China.
| |
Collapse
|
3
|
Essaidi O, Laaroussi M, Malqui H, Berroug L, Anarghou H, Fetoui H, Chigr F. Prenatal restraint stress affects early neurobehavioral response and oxidative stress in mice pups. Behav Brain Res 2024; 468:115025. [PMID: 38710451 DOI: 10.1016/j.bbr.2024.115025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Prenatal stress (PS), in both humans and animals, presents a potential risk to the mother and her fetus throughout gestation. PS is always associated with physiological changes that alter embryonic development and predispose the individual to lifelong health problems, including susceptibility to mental illness. This study aims to identify the harmful effects of prenatal restraint stress (PRS), commonly employed to induce stress painlessly and without any lasting debilitation during gestation. This stress is applied to pregnant Swiss albino mice from E7.5 to delivery for three hours daily. Our results show that PS affects dams' weight gain during the gestational period; moreover, the PS dams prefer passive nursing, exhibit a lower percentage of licking and grooming, and impair other maternal behaviors, including nesting and pup retrieval. Concerning the offspring, this stress induces neurobehavioral impairments, including a significant increase in the time of recovery of the young stressed pups in the surface righting reflex, the latency to avoid the cliff in the cliff avoidance test, longer latencies to accomplish the task in negative geotaxis, and a lower score in swimming development. These alterations were accompanied by increased Malondialdehyde activity (MDA) at PND17 and 21 and downregulation of AchE activity in the whole brain of pups on postnatal days 7 and 9. These findings demonstrated that PS causes deleterious neurodevelopmental impairments that can alter various behaviors later in life.
Collapse
Affiliation(s)
- Oumaima Essaidi
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Sliman University, Beni Mellal, Morocco
| | - Meriem Laaroussi
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Sliman University, Beni Mellal, Morocco
| | - Hafsa Malqui
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Sliman University, Beni Mellal, Morocco; Polydisciplinary Faculty of Khouribga, Sultan Moulay Sliman University, Beni Mellal, Morocco
| | - Laila Berroug
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Sliman University, Beni Mellal, Morocco
| | - Hammou Anarghou
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Sliman University, Beni Mellal, Morocco
| | - Hamadi Fetoui
- Toxicology-Micorbiology and Environmental Health Laboratory, Faculty of Sciences, Sfax University, Sfax, Tunisia
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Sliman University, Beni Mellal, Morocco.
| |
Collapse
|
4
|
Juncker HG, Naninck EFG, van Keulen BJ, Harinck JE, Schipper L, Lucassen PJ, van Goudoever JB, de Rooij SR, Korosi A. Maternal stress is associated with higher protein-bound amino acid concentrations in human milk. Front Nutr 2023; 10:1165764. [PMID: 37743929 PMCID: PMC10513938 DOI: 10.3389/fnut.2023.1165764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/10/2023] [Indexed: 09/26/2023] Open
Abstract
Background Maternal stress in the postpartum period affects not only the mother but also her newborn child, who is at increased risk of developing metabolic and mental disorders later in life. The mechanisms by which stress is transmitted to the infant are not yet fully understood. Human milk (HM) is a potential candidate as maternal stress affects various components of HM, e.g., fat and immunoglobulin concentrations. To date, it is unknown whether maternal stress also affects the amino acids (AAs) in HM, even though this nutrient is of extreme importance to child health and development. This study aimed to investigate whether and how maternal stress is associated with the AA composition of HM. Methods In this observational cohort study (Amsterdam, The Netherlands), lactating women were recruited in two study groups: a high-stress (HS) group; women whose child was hospitalized (n = 24), and a control (CTL) group; women who gave birth to a healthy child (n = 73). HM was collected three times a day, on postpartum days 10, 17, and 24. Perceived psychological stress was measured using validated questionnaires, while biological stress measures were based on hair, saliva, and HM cortisol concentrations. HM protein-bound and free AAs were analyzed by liquid chromatography and compared between groups. Results Maternal perceived stress scores were higher in the HS group (p < 0.01). The concentrations of protein-bound AAs in HM were higher in the HS group compared to the CTL group (p = 0.028) and were positively associated with HM cortisol concentrations (p = 0.024). The concentrations of free AAs did not differ between study groups and were unrelated to cortisol concentrations. Conclusion Findings from this prospective cohort study suggest that maternal stress in the postpartum period is associated with an altered human milk amino acid composition, which could play a role in the transmission of maternal stress effects to her child. The physiological implications of these stress-induced changes for infant development await future research.
Collapse
Affiliation(s)
- Hannah G. Juncker
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam, Netherlands
| | - Eva F. G. Naninck
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Britt J. van Keulen
- Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam, Netherlands
| | - Jolinda E. Harinck
- Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | | | - Paul J. Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Johannes B. van Goudoever
- Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam, Netherlands
| | - Susanne R. de Rooij
- Amsterdam Reproduction and Development, Amsterdam, Netherlands
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Aging and Later Life, Health Behaviors and Chronic Diseases, Amsterdam, Netherlands
| | - Aniko Korosi
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Tochitani S. Taurine: A Maternally Derived Nutrient Linking Mother and Offspring. Metabolites 2022; 12:metabo12030228. [PMID: 35323671 PMCID: PMC8954275 DOI: 10.3390/metabo12030228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Mammals can obtain taurine from food and synthesize it from sulfur-containing amino acids. Mammalian fetuses and infants have little ability to synthesize taurine. Therefore, they are dependent on taurine given from mothers either via the placenta or via breast milk. Many lines of evidence demonstrate that maternally derived taurine is essential for offspring development, shaping various traits in adults. Various environmental factors, including maternal obesity, preeclampsia, and undernutrition, can affect the efficacy of taurine transfer via either the placenta or breast milk. Thus, maternally derived taurine during the perinatal period can influence the offspring’s development and even determine health and disease later in life. In this review, I will discuss the biological function of taurine during development and the regulatory mechanisms of taurine transport from mother to offspring. I also refer to the possible environmental factors affecting taurine functions in mother-offspring bonding during perinatal periods. The possible functions of taurine as a determinant of gut microbiota and in the context of the Developmental Origins of Health and Disease (DOHaD) hypothesis will also be discussed.
Collapse
Affiliation(s)
- Shiro Tochitani
- Division of Health Science, Graduate School of Health Science, Suzuka University of Medical Science, Suzuka 513-8670, Japan; ; Tel.: +81-59-373-7069
- Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science, Suzuka 513-8670, Japan
- Center for Preventive Medical Sciences, Chiba University, Chiba 263-8522, Japan
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
6
|
Han G, Nishigawa T, Ikeda H, Hamada M, Yang H, Maesono S, Aso K, Jing A, Furuse M, Zhang R. Dysregulated metabolism and behaviors by disrupting gut microbiota in prenatal and neonatal mice. Anim Sci J 2021; 92:e13566. [PMID: 34170061 DOI: 10.1111/asj.13566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/28/2021] [Accepted: 05/07/2021] [Indexed: 11/26/2022]
Abstract
The live microbiota ecosystem in the intestine plays a critical role in maintaining the normal physiological and psychological functions in both animals and human beings. However, the chronic effect of microbiota disturbances during prenatal and neonatal developing periods on animal's health remains less studied. In the current study, pregnant ICR mice were fed with an antibiotic diet (7-g nebacitin [bacitracin-neomycin sulphate 2:1]/kg standard diet) from day 14 of conception, and their offspring were provided with the same diet till the termination of the experiments. Dams treated with antibiotics showed increased body weight along with enlarged gut. Antibiotic-treated offspring revealed decreased bodyweight, increased food, water, and sucrose intake. Administration of antibiotics affected corticosterone responsivity to acute 20 min restraint challenge in male pups. In behavior tests, female pups showed decreased movement in open field while male pups revealed decreased latency to open arms in elevated plus maze test and immobility time in tail suspension test. Together, these results suggested that early antibiotic exposure may impact on the food intake, body weight gain, and emotional behavior regulation in mice.
Collapse
Affiliation(s)
- Guofeng Han
- Laboratory of Regulation in Metabolism and Behavior, Department of Bioresource Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan.,Department of Animal Nutrition and Food Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Takuma Nishigawa
- Laboratory of Regulation in Metabolism and Behavior, Department of Bioresource Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Hiromi Ikeda
- Laboratory of Regulation in Metabolism and Behavior, Department of Bioresource Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Mizuki Hamada
- Laboratory of Regulation in Metabolism and Behavior, Department of Bioresource Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Hui Yang
- Laboratory of Regulation in Metabolism and Behavior, Department of Bioresource Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Saori Maesono
- Laboratory of Regulation in Metabolism and Behavior, Department of Bioresource Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Kenta Aso
- Laboratory of Regulation in Metabolism and Behavior, Department of Bioresource Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Ashley Jing
- Laboratory of Regulation in Metabolism and Behavior, Department of Bioresource Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Department of Bioresource Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Rong Zhang
- Laboratory of Regulation in Metabolism and Behavior, Department of Bioresource Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan.,Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,School of Medicine, Northwest University, Xi'An, China
| |
Collapse
|
7
|
Hamada M, Ihara T, Furuse M. Differences in free amino acid concentrations in milk between Wistar and Wistar Kyoto rats. J Vet Med Sci 2019; 81:838-845. [PMID: 30982807 PMCID: PMC6612506 DOI: 10.1292/jvms.19-0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Wistar Kyoto (WKY) rats, an animal depression model, display abnormal behaviors such as
hypoactivity and depression-like behavior compared with Wistar (WIS) rats as a control. A
previous study confirmed a dysfunction of amino acid metabolism in the brain of WKY rats
compared with that of WIS rats. At the neonatal stage, free amino acids in milk are
important nutrients because they act as immediate nutrients for offspring and may affect
later health and behavior of the offspring. Therefore, the present study aimed to
investigate free amino acid concentrations in milk and the relationships between free
amino acid concentrations in milk and plasma in WIS and WKY rats. The concentrations of
ten of the determined free amino acids in milk were significantly higher, but only
L-methionine was significantly lower, in WKY rats. Six free amino acids had significantly
higher concentrations in colostrum and two free amino acids had higher concentrations in
matured milk. Free amino acid concentrations in plasma changed by both genetic background
and lactation stage; however, the patterns of change in most free amino acid
concentrations except for taurine in plasma were similar between WIS and WKY rats. The
transport ratio of free amino acids from plasma to milk was not similar among the free
amino acids tested, and each free amino acid was influenced by the genetic background
and/or the type of milk.
Collapse
Affiliation(s)
- Mizuki Hamada
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Tsubasa Ihara
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|