1
|
Murase S, Mantani Y, Ohno N, Shimada A, Nakanishi S, Morishita R, Yokoyama T, Hoshi N. Regional differences in the ultrastructure of mucosal macrophages in the rat large intestine. Cell Tissue Res 2024; 396:245-253. [PMID: 38485763 DOI: 10.1007/s00441-024-03883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/25/2024] [Indexed: 04/28/2024]
Abstract
We previously clarified the histological characteristics of macrophages in the rat small intestine using serial block-face scanning electron microscopy (SBF-SEM). However, the regional differences in the characteristics of macrophages throughout the large intestine remain unknown. Here, we performed a pilot study to explore the regional differences in the ultrastructure of mucosal macrophages in the large intestine by using SBF-SEM analysis. SBF-SEM analysis conducted on the luminal side of the cecum and descending colon revealed macrophages as amorphous cells possessing abundant lysosomes and vacuoles. Macrophages in the cecum exhibited a higher abundance of lysosomes and a lower abundance of vacuoles than those in the descending colon. Macrophages with many intraepithelial cellular processes were observed beneath the intestinal superficial epithelium in the descending colon. Moreover, macrophages in contact with nerve fibers were more prevalent in the cecum than in the descending colon, and a subset of them surrounded a nerve bundle only in the cecum. In conclusion, the present pilot study suggested that the quantity of some organelles (lysosomes and vacuoles) in macrophages differed between the cecum and the descending colon and that there were some region-specific subsets of macrophages like nerve-associated macrophages in the cecum.
Collapse
Affiliation(s)
- Shota Murase
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan.
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Asaka Shimada
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Rinako Morishita
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
2
|
Hiroshige T, Uemura KI, Nakamura KI, Igawa T. Insights on Platelet-Derived Growth Factor Receptor α-Positive Interstitial Cells in the Male Reproductive Tract. Int J Mol Sci 2024; 25:4128. [PMID: 38612936 PMCID: PMC11012365 DOI: 10.3390/ijms25074128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Male infertility is a significant factor in approximately half of all infertility cases and is marked by a decreased sperm count and motility. A decreased sperm count is caused by not only a decreased production of sperm but also decreased numbers successfully passing through the male reproductive tract. Smooth muscle movement may play an important role in sperm transport in the male reproductive tract; thus, understanding the mechanism of this movement is necessary to elucidate the cause of sperm transport disorder. Recent studies have highlighted the presence of platelet-derived growth factor receptor α (PDGFRα)-positive interstitial cells (PICs) in various smooth muscle organs. Although research is ongoing, PICs in the male reproductive tract may be involved in the regulation of smooth muscle movement, as they are in other smooth muscle organs. This review summarizes the findings to date on PICs in male reproductive organs. Further exploration of the structural, functional, and molecular characteristics of PICs could provide valuable insights into the pathogenesis of male infertility and potentially lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Tasuku Hiroshige
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Kei-Ichiro Uemura
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Kei-Ichiro Nakamura
- Cognitive and Molecular Research Institute of Brain Diseases, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Tsukasa Igawa
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|
3
|
MANTANI Y, OHNO N, HARUTA T, NAKANISHI S, MORISHITA R, MURASE S, YOKOYAMA T, HOSHI N. Histological study on the reginal difference in the localization of mucosal enteric glial cells and their sheath structure in the rat intestine. J Vet Med Sci 2023; 85:1034-1039. [PMID: 37612064 PMCID: PMC10600526 DOI: 10.1292/jvms.23-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
The present study aimed to histologically clarify the regional specificity of the mucosal enteric glial cells (mEGCs) in the rat intestine with serial block-face scanning electron microscopy (SBF-SEM). SBF-SEM analysis with the ileum, the cecum and the descending colon revealed that mEGC nuclei were more abundant in the data stacks from the apical portion of the villus and the lateral portion of the crypt of the ileum. mEGCs exhibited a high rate of coverage over the nerve bundle around the lateral portion of the ileal crypt, but showed an extremely low level of coverage in the luminal portion of the cecum. These findings evidenced regional differences in the localization of mEGCs and in their sheath structure in the rat intestine.
Collapse
Affiliation(s)
- Youhei MANTANI
- Laboratory of Histophysiology, Department of Bioresource
Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Nobuhiko OHNO
- Department of Anatomy, Division of Histology and Cell
Biology, School of Medicine, Jichi Medical University, Tochigi, Japan
- Division of Ultrastructural Research, National Institute for
Physiological Sciences, Aichi, Japan
| | - Tomohiro HARUTA
- Bio 3D Promotion Group, Application Management Department,
JEOL Ltd., Tokyo, Japan
| | - Satoki NAKANISHI
- Laboratory of Histophysiology, Department of Bioresource
Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Rinako MORISHITA
- Laboratory of Histophysiology, Department of Bioresource
Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Shota MURASE
- Laboratory of Histophysiology, Department of Bioresource
Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of
Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of
Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| |
Collapse
|
4
|
Nakanishi S, Mantani Y, Ohno N, Morishita R, Yokoyama T, Hoshi N. Histological study on regional specificity of the mucosal nerve network in the rat large intestine. J Vet Med Sci 2023; 85:123-134. [PMID: 36517005 PMCID: PMC10017283 DOI: 10.1292/jvms.22-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Our previous studies and others have revealed detailed characteristics of the mucosal nerve network in the small intestine, but much remains unknown about the corresponding network in the large intestine. We herein investigated regional differences in the expression of neurochemical markers, the nerve network structure, and the cells in contact with nerve fibers by histological analysis using both immunohistochemistry and serial block-face scanning electron microscopy (SBF-SEM). Immunohistochemistry revealed that immunopositive structures for protein gene product 9.5, vasoactive intestinal peptide (VIP), calretinin and vesicular acetylcholine transporter were more prevalent in the lamina propria of the ascending colon than the cecum and descending colon (DC). There was no significant difference in the frequency of most neurochemical markers between the cecum and DC, but the frequencies of VIP+ structures were higher in the cecum than in the DC. SBF-SEM analysis showed that the nerve network structure was more developed on the luminal side of the DC than the cecum. The cells that nerve fibers abundantly contacted were subepithelial and lamina propria fibroblast-like cells and macrophages. In addition, nerve fibers in the cecum were in more frequent contact with immune cells such as macrophages and plasma cells than nerve fibers in the DC. Thus, the present histological analysis suggested that the mucosal nerve network in the large intestine possessed both regional universality and various specificities, and revealed the intimate relationship between the nerve network and immune cells, especially in the cecum.
Collapse
Affiliation(s)
- Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Tochigi, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, Aichi, Japan
| | - Rinako Morishita
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
5
|
Felsenthal N, Vignjevic DM. Stand by me: Fibroblasts regulation of the intestinal epithelium during development and homeostasis. Curr Opin Cell Biol 2022; 78:102116. [PMID: 35914344 DOI: 10.1016/j.ceb.2022.102116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 01/31/2023]
Abstract
The epithelium of the small intestine is composed of a single layer of cells that line two functionally distinct compartments, the villi that project into the lumen of the gut and the crypts that descend into the underlying connective tissue. Stem cells are located in crypts, where they divide and give rise to transit-amplifying cells that differentiate into secretory and absorptive epithelial cells. Most differentiated cells travel upwards from the crypt towards the villus tip, where they shed into the lumen. While some of these cell behaviors are an intrinsic property of the epithelium, it is becoming evident that tight coordination between the epithelium and the underlying fibroblasts plays a critical role in tissue morphogenesis, stem-cell niche maintenance and regionalized gene expression along the crypt-villus axis. Here, we will review the current literature describing the interaction between epithelium and fibroblasts during crypt-villus axis development and intestinal epithelium renewal during homeostasis.
Collapse
Affiliation(s)
- Neta Felsenthal
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | | |
Collapse
|
6
|
Region specificity of fibroblast-like cells in the mucosa of the rat large intestine. Cell Tissue Res 2022; 389:427-441. [PMID: 35779135 DOI: 10.1007/s00441-022-03660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
Abstract
Our previous studies using immunohistochemistry and serial block-face scanning electron microscopy (SBF-SEM) clarified that fibroblast-like cells (FBLCs) in the rat ileal mucosa are classifiable into several subtypes, but their characteristics throughout the large intestine remain unknown. In this study, we investigated the region-specific characteristics of FBLCs in the rat large intestine using histological analysis including SBF-SEM. Immunohistochemistry revealed that CD34+CD31- FBLCs were localized in the lamina propria beneath the crypt bases throughout the large intestine and were more abundant in the descending colon than in the other regions. In addition, platelet-derived growth factor receptor α (PDGFRα)+ FBLCs were ubiquitously present just below the epithelium throughout the large intestine, and those at the crypt base were slightly more abundant in the descending colon than in the other regions. SBF-SEM analysis revealed that there were two types of FBLCs around the crypt base in both the cecum and the descending colon: sub-epithelial FBLCs localizing just beneath the epithelium in the manner of PDGFRα+ FBLCs, and lamina propria FBLCs localizing farther away from the epithelium than sub-epithelial FBLCs in the manner of CD34+CD31- FBLCs. The lamina propria FBLCs were closely apposed to various immune cells in the lamina propria, and their endoplasmic reticulum in the descending colon exhibited various dilatation levels, unlike that in the cecum. These findings indicate that FBLCs, especially around the crypt base, differed in each region of the large intestine with respect to localization, abundance, and ultrastructure, which could lead to the region-specific microenvironment around the crypt base.
Collapse
|
7
|
Mantani Y, Haruta T, Nakanishi S, Sakata N, Yuasa H, Yokoyama T, Hoshi N. Ultrastructural and phenotypical diversity of macrophages in the rat ileal mucosa. Cell Tissue Res 2021; 385:697-711. [PMID: 33961127 DOI: 10.1007/s00441-021-03457-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022]
Abstract
Several types of macrophages have been reported in the intestinal mucosa, but their histological localization remains ambiguous. Here, we obtained detailed information about ultrastructural and phenotypical diversity of macrophage-like cells (MLCs) in the rat ileal mucosa using immunofluorescent analysis and serial block-face scanning electron microscopy (SBF-SEM). The results revealed that the cells immunopositive for CD68, the pan-macrophage marker, included CD163-CD4+, CD163+CD4+, and CD163-CD4- cells in the lamina propria (LP) of the intestinal villus and around the crypt. CD68+CD4+CD163- cells seemed to be preferentially localized in the intestinal villus, whereas CD68+CD163+CD4+ cells were frequently localized around the crypt. SBF-SEM analysis identified three types of MLCs in the ileal mucosa, which were tentatively named types I-III MLC based on aspects of the 3D-ultrastructure, such as the localization, quantity of lysosomes, endoplasmic reticulum, and exoplasm. Type I and II MLCs were localized in the villous LP, while type III MLCs were localized around the crypt, although type II MLCs were a minor population. All three MLC types extended their cellular processes into the epithelium, with type I MLCs showing the greatest abundance of extended processes. Type I MLCs in the upper portion of the intestinal villus showed a higher level of attachment to intraepithelial lymphocytes (IELs) compared to type III MLCs around the crypt. These findings suggest that macrophages of the rat ileal mucosa differed by region along the longitudinal axis of the villous tip-crypt from the perspective of ultrastructure, cellular composition, localization, and interactions with IELs.
Collapse
Affiliation(s)
- Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Tomohiro Haruta
- Bio 3D Promotion Group, Application Management Department, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo, 196-8558, Japan
| | - Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Nanami Sakata
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Hideto Yuasa
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
8
|
Nakanishi S, Mantani Y, Haruta T, Yokoyama T, Hoshi N. Three-dimensional analysis of neural connectivity with cells in rat ileal mucosa by serial block-face scanning electron microscopy. J Vet Med Sci 2020; 82:990-999. [PMID: 32493889 PMCID: PMC7399320 DOI: 10.1292/jvms.20-0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The comprehensive targets of innervation in the intestinal mucosa are unknown, partly because of the diversity of cell types and the complexity of the neural circuits. Herein, we
investigated the comprehensive targets of neural connectivity and analyzed the precise characteristics of their contact structures in the mucosa of rat ileum. We examined target
cells of neural connections and the characteristics of their contact structures by serial block-face scanning electron microscopy at four portions of the rat ileal mucosa: the
apical and basal portions in the villi, and the lateral and basal portions around/in the crypts. Nerve fibers were in contact with several types of fibroblast-like cells (FBLCs),
macrophage-like cells, eosinophils, lymphocyte-like cells, and other types of cells. The nerve fibers almost always ran more inside of lamina propria than subepithelial FBLC, and
thus contacts with epithelial cells were very scarce. The contact structures of the nerve fibers were usually contained synaptic vesicle-like structures, and we classified them
into patterns based on the number of nerve fiber contacting the target cells at one site, the maximum diameter of the contact structures, and the relationship between nerve fibers
and nerve bundles. The contact structures for each type of cells occasionally dug into the cellular bodies of the target cells. We revealed the comprehensive targets of neural
connectivity based on the characteristics of contact structures, and identified FBLCs, immunocompetent cells, and eosinophils as the candidate targets for innervation in the rat
ileal mucosa.
Collapse
Affiliation(s)
- Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tomohiro Haruta
- Bio 3D Promotion Group, Application Management Department, JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
9
|
Morphological and phenotypical diversity of eosinophils in the rat ileum. Cell Tissue Res 2020; 381:439-450. [PMID: 32424506 DOI: 10.1007/s00441-020-03209-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Eosinophils are abundantly present in intestinal mucosa. However, the morphological characteristics of their cellular population are still largely unknown. In this study, we examine their characteristics in the rat ileal mucosa using histological and ultrastructural methods. The results indicated that ileal eosinophils could be distinguished into two main groups based on their nuclear shapes and distribution: eosinophils with spheric or reniform nuclei mainly localized in the villous region and eosinophils with annular or bacilliform nuclei as the major population around crypts. Immunohistochemical analysis revealed that all eosinophils in the lamina propria (LP) were immunopositive for CD11b, whereas eosinophils in LP of the intestinal villus but not those in LP around the crypt, were immunopositive for CD11c. Three-dimensional ultrastructural analysis using serial block-face scanning electron microscopy showed that the eosinophils with spheric or reniform nuclei were abundant in the upper portions of the intestinal villus, whereas those with annular nuclei were abundant in the lower portions of the intestinal villus and around crypts. The eosinophils with spheric or reniform nuclei possessed broader cellular bodies with greater abundance of surface projections compared with those with annular nuclei. Eosinophils in the upper portions of intestinal villus frequently extended their cellular bodies into the intraepithelial space. The number of total and eosinophil-specific granules was positively correlated with the minor axis of the nuclear holes in the annular nuclei. These data suggest that ileal eosinophils exhibit not homogenous but rather diverse characteristics, possible due to the mixture of eosinophils at different maturation and/or activation stages.
Collapse
|