1
|
Mitani K, Ito Y, Takene Y, Inaba T. Evaluation of the quality of life-enhancing effect of allogeneic feline adipose mesenchymal stem cells in cats with osteoarthritis: A pilot study. Res Vet Sci 2025; 182:105470. [PMID: 39612738 DOI: 10.1016/j.rvsc.2024.105470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
Osteoarthritis (OA) is a progressive degenerative disease in older cats, and often leads to decreased quality of life (QOL). Mesenchymal stem cells (MSCs) have been used in novel therapies for inflammatory diseases. We aimed to evaluate quantitatively allogeneic adipose-derived MSC (ADSC) therapy in cats with naturally occurring OA, based on QOL assessment resources. To characterize the in vitro properties of ADSCs, we estimated ADSCs from four healthy cats with respect to morphology, differentiation potential, and immunomodulatory potential. Six cats with OA were administered a single intravenous injection of allogeneic ADSCs. Based on the feline musculoskeletal pain index (FMPI), the outcome measure was QOL. The cultured cells were adherent, exhibited a spindle shape without becoming flattened or large, and maintained doubling time until passage 5. After induction, the cells had osteogenic, adipogenic, and chondrogenic phenotypes. These cells expressed CD44 and CD90 and lacked expression of CD14 and CD45, had significantly suppressed the production of interferon -ɤ released from mitogen-stimulated lymphocytes (P < 0.05). The FMPI of all cats with OA significantly increased one month after ADSC therapy (P < 0.05). No adverse effects associated with ADSC administration were observed during follow-up in any of the cats. In conclusion, ADSC therapy with immunomodulatory potential could have beneficial effects on the QOL in cats with OA. Further research is necessary to carry out larger studies of the effectiveness of ADSC therapy.
Collapse
Affiliation(s)
- Kosuke Mitani
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Yuki Ito
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Yukio Takene
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Toshio Inaba
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan.
| |
Collapse
|
2
|
Clark NL, Bates KT, Harris LK, Tomlinson AW, Murray JK, Comerford EJ. GenPup-M: A novel validated owner-reported clinical metrology instrument for detecting early mobility changes in dogs. PLoS One 2023; 18:e0291035. [PMID: 38150469 PMCID: PMC10752556 DOI: 10.1371/journal.pone.0291035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/18/2023] [Indexed: 12/29/2023] Open
Abstract
OBJECTIVE To use a previously validated veterinary clinical examination sheet, Liverpool Osteoarthritis in Dogs (LOAD) questionnaire, combined with kinetic and kinematic gait analysis in dogs with/without mobility problems to demonstrate the capacity of a novel clinical metrology instrument ("GenPup-M") to detect canine mobility impairments. DESIGN Quantitative study. ANIMALS 62 dogs (31 with mobility impairments and 31 without mobility impairments). PROCEDURE The dogs' clinical history was obtained from owners and all dogs underwent a validated orthopaedic clinical examination. Mobility impairments were diagnosed in the mobility impaired group based on clinical history and orthopaedic examination. Owners were asked to complete GenPup-M along with a previously validated mobility questionnaire (Liverpool Osteoarthritis in Dogs (LOAD)) to identify construct validity. As a test of criterion validity, the correlation between instrument scores and the overall clinical examination scores, along with force-platform obtained peak vertical forces (PVF) were calculated. GenPup-M underwent internal consistency and factor analysis. Spatiotemporal parameters were calculated for dogs with/without mobility impairments to define the gait differences between these two groups. RESULTS Principal Component Analysis identified GenPup-M had two components with Eigenvalues >1 ("stiffness/ease of movement" and "willingness to be active/exercise"). Cronbach's α was used to test internal consistency of GenPup-M and was found to be "good" (0.87). There was a strong, positive correlation between GenPup-M and LOAD responses (r2 = 0.69, p<0.001) highlighting construct validity. Criterion validity was also shown when comparing GenPup-M to clinical examination scores (r2 = 0.74, p<0.001) and PVF (r2 = 0.43, p<0.001). Quantitative canine gait analysis showed that there were statistically significant differences between peak vertical forces (PVF) of mobility impaired and non-mobility impaired dogs (p<0.05). Analyses of PVF showed that non-mobility impaired dogs more evenly distributed their weight across all thoracic and pelvic limbs when compared to mobility impaired dogs. There were also consistent findings that mobility impaired dogs moved slower than non-mobility impaired dogs. CONCLUSION AND CLINICAL RELEVANCE GenPup-M is a clinical metrology instrument (CMI) that can be completed by dog owners to detect all mobility impairments, including those that are early in onset, indicating the versatility of GenPup-M to assess dogs with and without mobility impairments. Results of the study found that GenPup-M positively correlated with all three objective measures of canine mobility and consequently showed criterion and construct validity. Owner-reported CMIs such as GenPup-M allow non-invasive scoring systems which veterinary surgeons and owners can use to allow communication and longitudinal assessment of a dog's mobility. It is anticipated that GenPup-M will be used by owners at yearly vaccinations/health checks, allowing identification of any subtle mobility changes, and enabling early intervention.
Collapse
Affiliation(s)
- Natasha L. Clark
- Department of Musculoskeletal & Ageing Science, University of Liverpool, Liverpool, United Kingdom
| | - Karl T. Bates
- Department of Musculoskeletal & Ageing Science, University of Liverpool, Liverpool, United Kingdom
- Medical Research Council (MRC) and Versus Arthritis as part of the Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Northumberland, United Kingdom
| | | | - Andrew W. Tomlinson
- Department of Small Animal Clinical Sciences, Small Animal Teaching Hospital, Neston, United Kingdom
| | - Jane K. Murray
- Department of Small Animal Clinical Sciences, Small Animal Teaching Hospital, Neston, United Kingdom
| | - Eithne J. Comerford
- Department of Musculoskeletal & Ageing Science, University of Liverpool, Liverpool, United Kingdom
- Medical Research Council (MRC) and Versus Arthritis as part of the Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Northumberland, United Kingdom
- Dogs Trust, London, United Kingdom
| |
Collapse
|
3
|
della Rocca G, Schievano C, Di Salvo A, Hielm-Björkman AK, della Valle MF. Psychometric Testing and Validation of the Italian Version of the Helsinki Chronic Pain Index (I-HCPI) in Dogs with Pain Related to Osteoarthritis. Animals (Basel) 2023; 14:83. [PMID: 38200814 PMCID: PMC10778034 DOI: 10.3390/ani14010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Pain assessment is of paramount importance for properly managing dogs with osteoarthritis (OA) pain. The aim of the present study was to develop and psychometrically validate the Italian version of the Helsinki Chronic Pain Index (I-HCPI). Owners of OA painful (n = 87) and healthy dogs (n = 40) were administered the I-HCPI once or twice after an eight-week meloxicam treatment. Sixty-nine owners of healthy and OA dogs also completed the Italian version of the Canine Brief Pain Inventory (I-CBPI). Pain on palpation on a 0-4 scale was assessed on all recruited dogs. Construct validity was tested both with hypothesis testing and principal component analysis, confirming the I-HCPI accurately measured chronic pain. Good convergent and criterion validity were shown through correlations with I-CBPI subscores and distribution among pain on palpation scores (p < 0.0001). The significant difference between the pre- and post-treatment I-HCPI scores (p < 0.0001) and Cohen's effect size (2.27) indicated excellent responsiveness. The I-HCPI was shown to be reliable through communalities (range 0.47-0.90) and Cronbach α (≥0.95). Discriminative ability and cut-off point, as tested through Receiver Operating Characteristic analysis, showed excellent diagnostic accuracy with a threshold value of 11 (specificity 0.98 and sensitivity 0.94). The I-HCPI was confirmed to be a valid, sensitive, reliable, and accurate tool to discriminate between dogs with and without pain.
Collapse
Affiliation(s)
- Giorgia della Rocca
- Research Center on Animal Pain, Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy;
| | | | - Alessandra Di Salvo
- Research Center on Animal Pain, Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy;
| | - Anna K. Hielm-Björkman
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland;
| | - Maria Federica della Valle
- CeDIS (Centro di Documentazione e Informazione Scientifica), Innovet Italia SRL, 35030 Saccolongo, Italy;
| |
Collapse
|
4
|
Clark N, Comerford E. An update on mobility assessment of dogs with musculoskeletal disease. J Small Anim Pract 2023; 64:599-610. [PMID: 37455329 DOI: 10.1111/jsap.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/31/2023] [Accepted: 06/10/2023] [Indexed: 07/18/2023]
Abstract
Mobility impairments associated with musculoskeletal diseases, such as osteoarthritis and degenerative joint disease, affect approximately 200,000 dogs annually and pose a notable challenge to canine health and welfare. Osteoarthritis causes the remodelling of synovial joints, alongside inflammation and impaired mechanical function which can be extremely debilitating. Secondary osteoarthritis commonly affects dogs and can be exacerbated by previous joint abnormalities, such as patellar luxation or cranial cruciate ligament rupture. Although musculoskeletal diseases can affect dogs of any age, the early subtle signs of gait abnormalities are perhaps missed by owners, thus, dogs may be in the latter stages of osteoarthritis progression when they are presented to veterinarians. Dogs showing subtle signs of gait abnormalities must be presented to veterinary practices for acute diagnosis to prevent long-term deterioration. Musculoskeletal diseases, such as osteoarthritis and degenerative joint disease, are commonly diagnosed via visible radiographic changes. However, veterinarians can use a combination of subjective and objective clinical scoring systems, such as clinical metrology instruments and gait assessment in conjunction with radiography to aid their diagnosis and longitudinal monitoring of musculoskeletal diseases. These scoring systems may be more sensitive to earlier signs of mobility impairments in dogs, ultimately, promoting increased canine health and welfare by enabling pain reduction, improvement of muscle strength and preservation of joint function. Current canine mobility scoring systems available to veterinarians will be discussed in turn throughout this review for implementation into clinical practice.
Collapse
Affiliation(s)
- N Clark
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - E Comerford
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
5
|
Wang Y, Alexander M, Scott T, Cox DCT, Wellington A, Chan MKS, Wong MBF, Adalsteinsson O, Lakey JRT. Stem Cell Therapy for Aging Related Diseases and Joint Diseases in Companion Animals. Animals (Basel) 2023; 13:2457. [PMID: 37570266 PMCID: PMC10417747 DOI: 10.3390/ani13152457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Stem cell therapy is an attractive treatment for diseases in companion animals that cannot be treated by conventional veterinary medicine practices. The unique properties of stem cells, particularly the ability to differentiate into specific cell types, makes them a focal point in regenerative medicine treatments. Stem cell transplantation, especially using mesenchymal stem cells, has been proposed as a means to treat a wide range of injuries and ailments, resulting in tissue regeneration or repair. This review aims to summarize the veterinary use of stem cells for treating age-related and joint diseases, which are common conditions in pets. While additional research is necessary and certain limitations exist, the potential of stem cell therapy for companion animals is immense.
Collapse
Affiliation(s)
- Yanmin Wang
- California Medical Innovations Institute, 11107 Roselle Street, San Diego, CA 92121, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92868, USA
| | - Todd Scott
- Crestwood Veterinary Clinic, Edmonton, AB T5P 1J9, Canada
| | - Desiree C. T. Cox
- European Wellness Group, Klosterstrasse 205ID, 67480 Edenkoben, Germany
- Graduate Faculty, School of Graduate Studies, Rutgers University, New Brunswick, NJ 07013, USA
| | | | - Mike K. S. Chan
- European Wellness Group, Klosterstrasse 205ID, 67480 Edenkoben, Germany
| | | | - Orn Adalsteinsson
- European Wellness Group, Klosterstrasse 205ID, 67480 Edenkoben, Germany
| | - Jonathan R. T. Lakey
- California Medical Innovations Institute, 11107 Roselle Street, San Diego, CA 92121, USA
- Department of Surgery, University of California Irvine, Irvine, CA 92868, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Torres-Torrillas M, Damia E, del Romero A, Pelaez P, Miguel-Pastor L, Chicharro D, Carrillo JM, Rubio M, Sopena JJ. Intra-osseous plasma rich in growth factors enhances cartilage and subchondral bone regeneration in rabbits with acute full thickness chondral defects: Histological assessment. Front Vet Sci 2023; 10:1131666. [PMID: 37065219 PMCID: PMC10095833 DOI: 10.3389/fvets.2023.1131666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
Background Intra-articular (IA) combined with intra-osseous (IO) infiltration of plasma rich in growth factors (PRGF) have been proposed as an alternative approach to treat patients with severe osteoarthritis (OA) and subchondral bone damage. The aim of the study is to evaluate the efficacy of IO injections of PRGF to treat acute full depth chondral lesion in a rabbit model by using two histological validated scales (OARSI and ICRS II). Methodology A total of 40 rabbits were included in the study. A full depth chondral defect was created in the medial femoral condyle and then animals were divided into 2 groups depending on the IO treatment injected on surgery day: control group (IA injection of PRGF and IO injection of saline) and treatment group (IA combined with IO injection of PRGF). Animals were euthanized 56 and 84 days after surgery and the condyles were processed for posterior histological evaluation. Results Better scores were obtained in treatment group in both scoring systems at 56- and 84-days follow-up than in control group. Additionally, longer-term histological benefits have been obtained in the treatment group. Conclusions The results suggests that IO infiltration of PRGF enhances cartilage and subchondral bone healing more than the IA-only PRGF infiltration and provides longer-lasting beneficial effects.
Collapse
Affiliation(s)
- Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Elena Damia
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Ayla del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Pau Pelaez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Laura Miguel-Pastor
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - José M. Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Mónica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Joaquín J. Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| |
Collapse
|
7
|
Carr BJ. Regenerative Medicine and Rehabilitation Therapy in the Canine. Vet Clin North Am Small Anim Pract 2023; 53:801-827. [PMID: 36997410 DOI: 10.1016/j.cvsm.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Regenerative medicine is used in the canine to optimize tissue healing and treat osteoarthritis and soft tissue injuries. Rehabilitation therapy is also often implemented in the treatment and management of musculoskeletal conditions in the canine. Initial experimental studies have shown that regenerative medicine and rehabilitation therapy may work safely and synergistically to enhance tissue healing. Although additional study is required to define optional rehabilitation therapy protocols after regenerative medicine therapy in the canine, certain fundamental principles of rehabilitation therapy still apply to patients treated with regenerative medicine.
Collapse
|
8
|
Cell-Free Therapies: The Use of Cell Extracts to Mitigate Irradiation-Injured Salivary Glands. BIOLOGY 2023; 12:biology12020305. [PMID: 36829582 PMCID: PMC9953449 DOI: 10.3390/biology12020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Radiotherapy is a standard treatment for head and neck cancer patients worldwide. However, millions of patients who received radiotherapy consequently suffer from xerostomia because of irreversible damage to salivary glands (SGs) caused by irradiation (IR). Current treatments for IR-induced SG hypofunction only provide temporary symptom alleviation but do not repair the damaged SG, thus resulting in limited treatment efficacy. Therefore, there has recently been a growing interest in regenerative treatments, such as cell-free therapies. This review aims to summarize cell-free therapies for IR-induced SG, with a particular emphasis on utilizing diverse cell extract (CE) administrations. Cell extract is a group of heterogeneous mixtures containing multifunctional inter-cellular molecules. This review discusses the current knowledge of CE's components and efficacy. We propose optimal approaches to improve cell extract treatment from multiple perspectives (e.g., delivery routes, preparation methods, and other details regarding CE administration). In addition, the advantages and limitations of CE treatment are systematically discussed by comparing it to other cell-free (such as conditioned media and exosomes) and cell-based therapies. Although a comprehensive identification of the bioactive factors within CEs and their mechanisms of action have yet to be fully understood, we propose cell extract therapy as an effective, practical, user-friendly, and safe option to conventional therapies in IR-induced SG.
Collapse
|
9
|
Jacobs A, Elghawy O, Baruqui DL, Elghawy AA. Current State of Platelet-rich Plasma in the Treatment of Rheumatic Disease: A Retrospective Review of the Literature. Curr Rheumatol Rev 2023; 19:400-407. [PMID: 37078351 PMCID: PMC10523354 DOI: 10.2174/1573397119666230420112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Rheumatic diseases are a spectrum of autoimmune or inflammatory diseases that cause damage to the musculoskeletal system as well as vital organs, such as the heart, lungs, kidneys, and central nervous system. METHODS The study of rheumatic disease has made great progress in the understanding and management of these conditions in the last few decades using disease-modifying antirheumatic drugs and synthesized biological immunomodulating therapies. However, one potential treatment that has not been well investigated in rheumatic disease is platelet-rich plasma (PRP). PRP is proposed to facilitate the healing of injured tendons and ligaments through a variety of mechanisms, including mitogenesis, angiogenesis and macrophage activation via cytokine release, although its exact mechanism is unclear. RESULT There has been a great deal of work in determining the exact preparation method and composition of PRP for regenerative purposes in orthopedic surgery, sports medicine, dentistry, cardiac surgery, pediatric surgery, gynecology, urology, plastic surgery, ophthalmology, and dermatology. Despite this, there is a paucity of research on the impact of PRP on rheumatic disease. CONCLUSION This study aims to summarize and evaluate the current research concerning the use of PRP in rheumatic disease.
Collapse
Affiliation(s)
- Adam Jacobs
- Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Omar Elghawy
- University of Virginia School of Medicine, Charlottesville, VA, United States
| | | | - Ahmed Aly Elghawy
- Department of Rheumatologic and Immunologic Disease, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
10
|
Monteiro BP, Lascelles BDX, Murrell J, Robertson S, Steagall PVM, Wright B. 2022
WSAVA
guidelines for the recognition, assessment and treatment of pain. J Small Anim Pract 2022. [DOI: 10.1111/jsap.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- B. P. Monteiro
- Department of Clinical Sciences, Faculty of Veterinary Medicine Université de Montréal 3200 rue Sicotte, Saint‐Hyacinthe Quebec Canada
| | - B. D. X. Lascelles
- Comparative Pain Research Laboratory and Surgery Section North Carolina State University 4700 Hillsborough Street Raleigh NC USA
| | - J. Murrell
- Highcroft Veterinary Referrals 615 Wells Rd, Whitchurch Bristol BS149BE UK
| | - S. Robertson
- Senior Medical Director Lap of Love Veterinary Hospice 17804 N US Highway 41 Lutz FL 33549 USA
| | - P. V. M. Steagall
- Department of Clinical Sciences, Faculty of Veterinary Medicine Université de Montréal 3200 rue Sicotte, Saint‐Hyacinthe Quebec Canada
| | - B. Wright
- Mistral Vet 4450 Thompson Pkwy Fort Collins CO 80534 USA
| |
Collapse
|
11
|
Ivanovska A, Wang M, Arshaghi TE, Shaw G, Alves J, Byrne A, Butterworth S, Chandler R, Cuddy L, Dunne J, Guerin S, Harry R, McAlindan A, Mullins RA, Barry F. Manufacturing Mesenchymal Stromal Cells for the Treatment of Osteoarthritis in Canine Patients: Challenges and Recommendations. Front Vet Sci 2022; 9:897150. [PMID: 35754551 PMCID: PMC9230578 DOI: 10.3389/fvets.2022.897150] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022] Open
Abstract
The recent interest in advanced biologic therapies in veterinary medicine has opened up opportunities for new treatment modalities with considerable clinical potential. Studies with mesenchymal stromal cells (MSCs) from animal species have focused on in vitro characterization (mostly following protocols developed for human application), experimental testing in controlled studies and clinical use in veterinary patients. The ability of MSCs to interact with the inflammatory environment through immunomodulatory and paracrine mechanisms makes them a good candidate for treatment of inflammatory musculoskeletal conditions in canine species. Analysis of existing data shows promising results in the treatment of canine hip dysplasia, osteoarthritis and rupture of the cranial cruciate ligament in both sport and companion animals. Despite the absence of clear regulatory frameworks for veterinary advanced therapy medicinal products, there has been an increase in the number of commercial cell-based products that are available for clinical applications, and currently the commercial use of veterinary MSC products has outpaced basic research on characterization of the cell product. In the absence of quality standards for MSCs for use in canine patients, their safety, clinical efficacy and production standards are uncertain, leading to a risk of poor product consistency. To deliver high-quality MSC products for veterinary use in the future, there are critical issues that need to be addressed. By translating standards and strategies applied in human MSC manufacturing to products for veterinary use, in a collaborative effort between stem cell scientists and veterinary researchers and surgeons, we hope to facilitate the development of quality standards. We point out critical issues that need to be addressed, including a much higher level of attention to cell characterization, manufacturing standards and release criteria. We provide a set of recommendations that will contribute to the standardization of cell manufacturing methods and better quality assurance.
Collapse
Affiliation(s)
- Ana Ivanovska
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Mengyu Wang
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Tarlan Eslami Arshaghi
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Georgina Shaw
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | | | | | | | - Russell Chandler
- Orthopaedic Referral Service, Alphavet Veterinary Centre, Newport, United Kingdom
| | - Laura Cuddy
- Small Animal Surgery, Canine Sports Medicine and Rehabilitation, Veterinary Specialists Ireland, Summerhill, Ireland
| | - James Dunne
- Knocknacarra Veterinary Clinic, Ark Vets Galway, Galway, Ireland
| | - Shane Guerin
- Small Animal Surgery, Gilabbey Veterinary Hospital, Cork, Ireland
| | | | - Aidan McAlindan
- Northern Ireland Veterinary Specialists, Hillsborough, United Kingdom
| | - Ronan A Mullins
- Department of Small Animal Surgery, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
12
|
Carr BJ. Platelet-Rich Plasma as an Orthobiologic: Clinically Relevant Considerations. Vet Clin North Am Small Anim Pract 2022; 52:977-995. [PMID: 35562219 DOI: 10.1016/j.cvsm.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Platelet-rich plasma (PRP) is an autologous blood-derived product processed to concentrate platelets and the associated growth factors. PRP has been shown to be relatively well-tolerated and safe to use for a number of conditions in humans, equines, and canines. There are multiple commercial systems that have been validated for canine use. These systems use a variety of methodologies to produce a PRP product. However, PRP products have been shown to differ greatly between systems. Further study is needed to fully elucidate optimal component concentrations for various indications.
Collapse
Affiliation(s)
- Brittany Jean Carr
- The Veterinary Sports Medicine and Rehabilitation Center, 4104 Liberty Highway, Anderson, SC 29621, USA.
| |
Collapse
|
13
|
Peláez P, Damiá E, Torres-Torrillas M, Chicharro D, Cuervo B, Miguel L, del Romero A, Carrillo JM, Sopena JJ, Rubio M. Cell and Cell Free Therapies in Osteoarthritis. Biomedicines 2021; 9:1726. [PMID: 34829953 PMCID: PMC8615373 DOI: 10.3390/biomedicines9111726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is the most common articular disease in adults and has a current prevalence of 12% in the population over 65 years old. This chronic disease causes damage to articular cartilage and synovial joints, causing pain and leading to a negative impact on patients' function, decreasing quality of life. There are many limitations regarding OA conventional therapies-pharmacological therapy can cause gastrointestinal, renal, and cardiac adverse effects, and some of them could even be a threat to life. On the other hand, surgical options, such as microfracture, have been used for the last 20 years, but hyaline cartilage has a limited regeneration capacity. In recent years, the interest in new therapies, such as cell-based and cell-free therapies, has been considerably increasing. The purpose of this review is to describe and compare bioregenerative therapies' efficacy for OA, with particular emphasis on the use of mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP). In OA, these therapies might be an alternative and less invasive treatment than surgery, and a more effective option than conventional therapies.
Collapse
Affiliation(s)
- Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Elena Damiá
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Belén Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Laura Miguel
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Ayla del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Jose Maria Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Joaquín J. Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Mónica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| |
Collapse
|
14
|
Platelet-Rich Plasma for the Treatment of Degenerative Lumbosacral Stenosis: A Study with Retired Working Dogs. Animals (Basel) 2021; 11:ani11102965. [PMID: 34679984 PMCID: PMC8532889 DOI: 10.3390/ani11102965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 01/31/2023] Open
Abstract
Traditionally, canine degenerative lumbosacral stenosis (DLS) has been defined as a multifactorial syndrome characterized by lumbosacral pain triggered by the compression of the nerve rootlets of the cauda equina. There is still no consensus on the treatment of this condition, probably because there are a plethora of possible causes. In addition to compression, inflammation is a very important factor in the physiopathology of the disorder. Platelet-rich plasma (PRP) consists of an increased concentration of autologous platelets suspended in a small amount of plasma. Platelets are a source of several growth factors. Growth factors were shown to help in wound healing and biological processes, such as chemotaxis, neovascularization and synthesis of extracellular matrix, and growth factors were used to improve soft tissue healing and bone regeneration. PRP also facilitates the restoration of the structural integrity of the affected anatomy. Fourteen dogs diagnosed with DLS were treated with three epidural injections of PRP on days 0, 15 and 45. All dogs showed clinical improvement 3 months after the initial treatment. Gait was also objectively assessed by means of the use of force platform analysis before and after treatment, showing significant improvement. The results show that PRP may provide a good alternative to other nonsurgical treatments, such as prednisolone epidural injection.
Collapse
|