1
|
NUNOBIKI S, YOSHIMOTO A, ITO M, YONOICHI S, HARA Y, ISHIDA Y, MORISHITA R, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, HOSHI N. Effect of the neonicotinoid pesticide clothianidin at a no-observed-adverse-effect-level (NOAEL) dose on maternal behavior in pregnant mice and their female offspring. J Vet Med Sci 2025; 87:411-418. [PMID: 39993733 PMCID: PMC11964861 DOI: 10.1292/jvms.24-0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Our previous reports showed that exposure to the neonicotinoid pesticide clothianidin (CLO) at a no-observed-adverse-effect-level (NOAEL) dose during fetal development and lactation in mice led to higher rates of maternal neglect and infanticide. Although the demonstrated association between decreased oxytocin secretion and decreased maternal parenting behavior implies a link to declining oxytocin levels, no evidence has yet emerged in CLO to clearly establish such an association. This study investigated the effects of CLO on maternal behavior and oxytocin in C57BL/6N mice exposed during pregnancy and lactation (F0 mothers) as well as in their adult female offspring (F1 mothers). The effects were assessed using nest building assays during pregnancy and pup retrieval assessment after delivery. The results showed a decrease in oxytocin secretion and a marked decrease in pup retrieval behavior among the F0 mothers in the CLO exposure group compared to those in the control group. Their offspring, the F1 mothers, showed significantly lower nest-building scores during pregnancy. In conclusion, this study is the first to examine the potential mechanisms by which CLO exposure in mothers at the NOAEL dose during pregnancy and lactation results in reduced plasma oxytocin levels, subsequently leading to a decline in maternal behaviors such as pup retrieval. Furthermore, these effects may impair maternal behaviors in the next generation, when the offspring mice become mothers.
Collapse
Affiliation(s)
- Sarika NUNOBIKI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Ayano YOSHIMOTO
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Makiko ITO
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Rinako MORISHITA
- Laboratory of Histophysiology, Department of Animal Science,
Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science,
Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Tetsushi HIRANO
- Faculty of Pharmaceutical Sciences, University of Toyama,
Toyama, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental
Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido,
Japan
- Translational Research Unit, Veterinary Teaching Hospital,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido,
Japan
- Water Research Group, Unit for Environmental Sciences and
Management, North-West University, Potchefstroom, South Africa
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| |
Collapse
|
2
|
Meng Z, Yan Z, Yang R, Wu X, Zhang X, Pan H, Bao X, Liu L, Chen X. Evaluating the toxicity effects of thiamethoxam and its main metabolite clothianidin to earthworms (Eisenia fetida) from the perspective of endogenous metabolites. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106035. [PMID: 39277362 DOI: 10.1016/j.pestbp.2024.106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 09/17/2024]
Abstract
The widespread application of neonicotinoid insecticides (NNIs) has attracted widespread attention to their potential ecotoxicological effects. In this study, we systematically evaluated the toxic effects of thiamethoxam (TMX) and its metabolite clothianidin (CLO) on earthworms (Eisenia fetida). Specifically, the antioxidant system responses and endogenous metabolite metabolism responses in earthworms were analyzed in the temporal dimension after 7, 14, 21 and 28 days of exposure to TMX and CLO. The results found that TMX and CLO could inhibit the growth phenotype of earthworms and cause significant changes in antioxidant system related indicators. More importantly, we found that TMX and CLO could cause significant changes in the metabolic profiles of earthworms through NMR-based metabolomics. From the changes in endogenous metabolites, the toxicity effects of TMX on earthworms gradually increases with prolonged exposure time. Differently, the toxicity effects of CLO on earthworms is significantly higher than that of TMX in the early stages of exposure. Meanwhile, these impacts will not weaken with prolonged exposure time. Furthermore, the results of KEGG enrichment pathway analysis indicated that TMX and CLO could significantly interfere with energy homeostasis, redox homeostasis, osmotic regulation, amino acid metabolism and protein synthesis in earthworms. These findings further deepen our understanding of the ecotoxicological effects of NNIs on soil organism.
Collapse
Affiliation(s)
- Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Jiangsu, Yangzhou 225009, China; School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu, Yangzhou 225009, China
| | - Zixin Yan
- College of Plant Protection, Yangzhou University, Jiangsu, Yangzhou 225009, China
| | - Ruixian Yang
- College of Plant Protection, Yangzhou University, Jiangsu, Yangzhou 225009, China
| | - Xinyi Wu
- College of Plant Protection, Yangzhou University, Jiangsu, Yangzhou 225009, China
| | - Xiuli Zhang
- College of Plant Protection, Yangzhou University, Jiangsu, Yangzhou 225009, China
| | - Hui Pan
- College of Plant Protection, Yangzhou University, Jiangsu, Yangzhou 225009, China
| | - Xin Bao
- College of Plant Protection, Yangzhou University, Jiangsu, Yangzhou 225009, China
| | - Li Liu
- School of Tourism and Cuisine, Yangzhou University, Jiangsu, Yangzhou 225127, China.
| | - Xiaojun Chen
- College of Plant Protection, Yangzhou University, Jiangsu, Yangzhou 225009, China.
| |
Collapse
|
3
|
HARA Y, SHODA A, YONOICHI S, ISHIDA Y, MURATA M, KIMURA M, ITO M, NUNOBIKI S, YOSHIMOTO A, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, TABUCHI Y, HOSHI N. No-observed-adverse-effect-level (NOAEL) clothianidin, a neonicotinoid pesticide, impairs hippocampal memory and motor learning associated with alteration of gene expression in cerebellum. J Vet Med Sci 2024; 86:340-348. [PMID: 38311399 PMCID: PMC10963099 DOI: 10.1292/jvms.23-0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Neonicotinoid pesticides (NNs) have been associated with numerous neurobehavioral effects in rodents, raising concerns about their impact on cognitive function. Clothianidin (CLO), a type of NN, was orally administered to male mice (10 weeks old, C57BL/6N) at the no-observed-adverse-effect level (NOAEL) of 50 mg/kg/day as indicated in the pesticide risk assessment report. Behavioral tests (novel location recognition and rotarod tests) evaluated hippocampal memory and cerebellar motor learning. After each test, plasma monoamines (3-methoxytyramine, histamine, serotonin, tryptamine) were measured by LC-ESI/MS/MS (Liquid chromatography-electrospray ionization/tandem mass spectrometry), and cerebellar mRNA expression was quantified by microarray and qRT-PCR analyses. The NOAEL of CLO was found to impair hippocampal memory, leading to decreased spontaneous locomotor activity and motor function. We reported, for the first time, multiple alterations of gene expression in the cerebellum associated with motor dysfunction.
Collapse
Affiliation(s)
- Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Mako KIMURA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Makiko ITO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sarika NUNOBIKI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Ayano YOSHIMOTO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Tetsushi HIRANO
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Yoshiaki TABUCHI
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
4
|
YONOICHI S, HARA Y, ISHIDA Y, SHODA A, KIMURA M, MURATA M, NUNOBIKI S, ITO M, YOSHIMOTO A, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, YOKOI Y, AYABE T, NAKAMURA K, HOSHI N. Effects of exposure to the neonicotinoid pesticide clothianidin on α-defensin secretion and gut microbiota in mice. J Vet Med Sci 2024; 86:277-284. [PMID: 38267031 PMCID: PMC10963084 DOI: 10.1292/jvms.23-0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
The mechanism by which the neonicotinoid pesticide clothianidin (CLO) disrupts the intestinal microbiota of experimental animals is unknown. We focused on α-defensins, which are regulators of the intestinal microbiota. Subchronic exposure to CLO induced dysbiosis and reduced short-chain fatty acid-producing bacteria in the intestinal microbiota of mice. Levels of cryptdin-1 (Crp1, a major α-defensin in mice) in feces and cecal contents were lower in the CLO-exposed groups than in control. In Crp1 immunostaining, Paneth cells in the jejunum and ileum of the no-observed-adverse-effect-level CLO-exposed group showed a stronger positive signal than control, likely due to the suppression of Crp1 release. Our results showed that CLO exposure suppresses α-defensin secretion from Paneth cells as part of the mechanism underlying CLO-induced dysbiosis.
Collapse
Affiliation(s)
- Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Mako KIMURA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sarika NUNOBIKI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Makiko ITO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Ayano YOSHIMOTO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Tetsushi HIRANO
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Yuki YOKOI
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science,
Hokkaido, Japan
| | - Tokiyoshi AYABE
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science,
Hokkaido, Japan
| | - Kiminori NAKAMURA
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science,
Hokkaido, Japan
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|