1
|
Cao Y, Gao L, Zhang L, Zhou L, Yang J, Deng L, Zhao J, Qi C, Liu J. Genome-wide screening of lipoproteins in Actinobacillus pleuropneumoniae identifies three antigens that confer protection against virulent challenge. Sci Rep 2020; 10:2343. [PMID: 32047221 PMCID: PMC7012816 DOI: 10.1038/s41598-020-58968-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 01/23/2020] [Indexed: 11/24/2022] Open
Abstract
Actinobacillus pleuropneumoniae is an important veterinary pathogen that causes porcine pleuropneumonia. Lipoproteins of bacterial pathogens play pleiotropic roles in the infection process. In addition, many bacterial lipoproteins are antigenic and immunoprotective. Therefore, characterization of lipoproteins is a promising strategy for identification of novel vaccine candidates or diagnostic markers. We cloned 58 lipoproteins from A. pleuropneumoniae JL03 (serovar 3) and expressed them in Escherichia coli. Five proteins with strong positive signals in western blotting analysis were used to immunize mice. These proteins elicited significant antibody responses, and three of them (APJL_0922, APJL_1380 and APJL_1976) generated efficient immunoprotection in mice against lethal heterologous challenge with A. pleuropneumoniae 4074 (serovar 1), both in the active and passive immunization assays. Then immunogenicity of these three lipoproteins (APJL_0922, APJL_1380 and APJL_1976) were further tested in pigs. Results showed that these proteins elicited considerable humoral immune responses and effective protective immunity against virulent A. pleuropneumoniae challenge. Our findings suggest that these three novel lipoproteins could be potential subunit vaccine candidates.
Collapse
Affiliation(s)
- Yurou Cao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Lulu Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Li Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Lixiang Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Jihong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Lingfu Deng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Jin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Chao Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jinlin Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| |
Collapse
|
2
|
Jung M, Won H, Shin MK, Oh MW, Shim S, Yoon I, Yoo HS. Development of Actinobacillus pleuropneumoniae ApxI, ApxII, and ApxIII-specific ELISA methods for evaluation of vaccine efficiency. J Vet Sci 2019; 20:e2. [PMID: 30944525 PMCID: PMC6441810 DOI: 10.4142/jvs.2019.20.e2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/03/2018] [Accepted: 12/16/2018] [Indexed: 11/20/2022] Open
Abstract
Among various vaccines against Actinobacillus pleuropneumoniae, subunit vaccines using recombinant proteins of ApxI, ApxII, and ApxIII as vaccine antigens have shown good efficacy in terms of safety and protection. Therefore, subunit vaccines are being applied worldwide and the development of new subunit vaccines is actively being conducted. To evaluate the efficacy of the subunit vaccines, it is important to measure immune responses to each Apx toxin separately. However, the cross-reactivity of antibodies makes it difficult to measure specific immune reactivity to each toxin. In the present study, specific antigen regions among the toxins were identified and cloned to solve this problem. The antigenicity of each recombinant protein was demonstrated by Western blot. Using the recombinant proteins, we developed enzyme-linked immunosorbent assay (ELISA) methods that can detect specific immune responses to each Apx toxin in laboratory guinea pigs. We suggest that the ELISA method developed in this study can be an important tool in the evaluation of vaccine efficiency and vaccine development.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Microbiology, Research Institute of Life Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Hokeun Won
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,Choong Ang Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Research Institute of Life Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Myung Whan Oh
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Soojin Shim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Injoong Yoon
- Choong Ang Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Oda K, Tsukahara F, Kubota S, Kida K, Kitajima T, Hashimoto S. Emulsifier content and side effects of oil-based adjuvant vaccine in swine. Res Vet Sci 2006; 81:51-7. [PMID: 16337664 DOI: 10.1016/j.rvsc.2005.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 05/01/2005] [Accepted: 10/10/2005] [Indexed: 11/24/2022]
Abstract
Side effects caused by the excessive emulsifier in oil-based adjuvant vaccine were examined practically in swine using one oil-in-water type adjuvant vaccine against swine pleuropneumonia. The vaccine was prepared from cell-free-antigen of Actinobacillus pleuropneumoniae, liquid paraffin, and several polyoxyethylenesorbitan and sorbitan oleates. Based on findings about safety in mice and emulsion stability, 2 vaccines containing either 11.25% or 6.25% emulsifier content were injected intramuscularly twice in swine, as the highest and lowest limits, respectively, within the practical range. All pigs showed temporary fever and malaise with anorexia for several days after each injection. The fever of the higher emulsifier content group took significantly longer to recover than the lower. Malaise also showed a similar tendency. On the other hand, antibody response was sufficiently induced with no significant difference between the 2 groups. Lowering the emulsifier content is a very simple but effective solution for mitigation of side effects without the reduction of adjuvanticity. For safe and high-quality oil-based adjuvant vaccines, not only antigen and base-oil, but emulsifier content must be optimized.
Collapse
Affiliation(s)
- Kenji Oda
- Kyoto Biken Laboratories, Inc., 24-16 Makishima-cho Uji-shi, Kyoto 611-0041, Japan.
| | | | | | | | | | | |
Collapse
|