1
|
Regnard GL, Rybicki EP, Hitzeroth II. Recombinant expression of beak and feather disease virus capsid protein and assembly of virus-like particles in Nicotiana benthamiana. Virol J 2017; 14:174. [PMID: 28893289 PMCID: PMC5594603 DOI: 10.1186/s12985-017-0847-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Beak and feather disease virus (BFDV) is an important disease causing agent affecting psittacines. BFDV is highly infectious and can present as acute, chronic or subclinical disease. The virus causes immunodeficiency and is often associated with secondary infections. No commercial vaccine is available and yields of recombinant BFDV capsid protein (CP) expressed in insect cells and bacteria are yet to be seen as commercially viable, although both systems produced BFDV CP that could successfully assemble into virus-like particles (VLPs). Plants as expression systems are increasingly becoming favourable for the production of region-specific and niche market products. The aim of this study was to investigate the formation and potential for purification of BFDV VLPs in Nicotiana benthamiana. METHODS The BFDV CP was transiently expressed in N. benthamiana using an Agrobacterium-mediated system and plant expression vectors that included a bean yellow dwarf virus (BeYDV)-based replicating DNA vector. Plant-produced BFDV CP was detected using immunoblotting. VLPs were purified using sucrose cushion and CsCl density gradient centrifugation and visualised using transmission electron microscopy. RESULTS In this study we demonstrate that the BFDV CP can be successfully expressed in N. benthamiana, albeit at relatively low yield. Using a purification strategy based on centrifugation we demonstrated that the expressed CP can self-assemble into VLPs that can be detected using electron microscopy. These plant-produced BFDV VLPs resemble those produced in established recombinant expression systems and infectious virions. It is possible that the VLPs are spontaneously incorporating amplicon DNA produced from the replicating BeYDV plant vector. CONCLUSIONS This is the first report of plant-made full-length BFDV CP assembling into VLPs. The putative pseudovirions could be used to further the efficacy of vaccines against BFDV.
Collapse
Affiliation(s)
- Guy L. Regnard
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Inga I. Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| |
Collapse
|
2
|
Fogell DJ, Martin RO, Groombridge JJ. Beak and feather disease virus in wild and captive parrots: an analysis of geographic and taxonomic distribution and methodological trends. Arch Virol 2016; 161:2059-74. [PMID: 27151279 PMCID: PMC4947100 DOI: 10.1007/s00705-016-2871-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/24/2016] [Indexed: 01/15/2023]
Abstract
Psittacine beak and feather disease (PBFD) has emerged in recent years as a major threat to wild parrot populations and is an increasing concern to aviculturists and managers of captive populations. Pathological and serological tests for screening for the presence of beak and feather disease virus (BFDV) are a critical component of efforts to manage the disease and of epidemiological studies. Since the disease was first reported in the mid-1970s, screening for BFDV has been conducted in numerous wild and captive populations. However, at present, there is no current and readily accessible synthesis of screening efforts and their results. Here, we consolidate information collected from 83 PBFD- and BFDV-based publications on the primary screening methods being used and identify important knowledge gaps regarding potential global disease hotspots. We present trends in research intensity in this field and critically discuss advances in screening techniques and their applications to both aviculture and to the management of threatened wild populations. Finally, we provide an overview of estimates of BFDV prevalence in captive and wild flocks alongside a complete list of all psittacine species in which the virus has been confirmed. Our evaluation highlights the need for standardised diagnostic tests and more emphasis on studies of wild populations, particularly in view of the intrinsic connection between global trade in companion birds and the spread of novel BFDV strains into wild populations. Increased emphasis should be placed on the screening of captive and wild parrot populations within their countries of origin across the Americas, Africa and Asia.
Collapse
Affiliation(s)
- Deborah J Fogell
- Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, CT2 7NZ, UK.
| | - Rowan O Martin
- World Parrot Trust, Glanmor House, Hayle, Cornwall, TR27 4HB, UK.,Percy FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| | - Jim J Groombridge
- Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, CT2 7NZ, UK
| |
Collapse
|
3
|
Sarker S, Ghorashi SA, Forwood JK, Bent SJ, Peters A, Raidal SR. Phylogeny of beak and feather disease virus in cockatoos demonstrates host generalism and multiple-variant infections within Psittaciformes. Virology 2014; 460-461:72-82. [PMID: 25010272 DOI: 10.1016/j.virol.2014.04.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/09/2014] [Accepted: 04/17/2014] [Indexed: 01/18/2023]
Abstract
Phylogenetic analyses of the highly genetically diverse but antigenically conserved, single-stranded circular, DNA genome of the avian circovirus, beak and feather disease virus (BFDV) from cockatoo species throughout Australia demonstrated a high mutation rate for BFDV (orders of magnitude fall in the range of 10(-4) substitutions/site/year) along with strong support for recombination indicating active cross-species transmission in various subpopulations. Multiple variants of BFDV were demonstrated with at least 30 genotypic variants identified within nine individual birds, with one containing up to 7 variants. Single genetic variants were detected in feathers from 2 birds but splenic tissue provided further variants. The rich BFDV genetic diversity points to Australasia as the most likely geographical origin of this virus and supports flexible host switching. We propose this as evidence of Order-wide host generalism in the Psittaciformes characterised by high mutability that is buffered by frequent recombination and slow replication strategy.
Collapse
Affiliation(s)
- Subir Sarker
- School of Animal and Veterinary Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, New South Wales 2678, Australia; Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Boorooma Street, Wagga Wagga, New South Wales 2678, Australia.
| | - Seyed A Ghorashi
- School of Animal and Veterinary Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, New South Wales 2678, Australia; Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Boorooma Street, Wagga Wagga, New South Wales 2678, Australia.
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, New South Wales 2678, Australia; Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Boorooma Street, Wagga Wagga, New South Wales 2678, Australia.
| | - Stephen J Bent
- Molecular and Biomedical Science, Faculty of Sciences, The University of Adelaide, Australia.
| | - Andrew Peters
- School of Animal and Veterinary Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, New South Wales 2678, Australia; Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Boorooma Street, Wagga Wagga, New South Wales 2678, Australia.
| | - Shane R Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, New South Wales 2678, Australia; Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Boorooma Street, Wagga Wagga, New South Wales 2678, Australia.
| |
Collapse
|
4
|
Molecular characterisation of beak and feather disease virus (BFDV) in New Zealand and its implications for managing an infectious disease. Arch Virol 2012; 157:1651-63. [PMID: 22638639 DOI: 10.1007/s00705-012-1336-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
Abstract
Beak and feather disease virus (BFDV) infections are often fatal to both captive and wild parrot populations. Its recent discovery in a wild population of native red-fronted parakeets has raised concerns for the conservation of native parrots, all of which are threatened or endangered. The question of a recent introduction versus a native genotype of the virus poses different conservation-management challenges, and thus, a clear understanding of the molecular phylogeny of BDFV is a crucial step towards integrated management planning. This study represents the first comprehensive attempt to screen New Zealand's endangered and threatened psittacines systematically for BFDV. We sampled and screened kakapos (Strigops habroptilus), kakas (Nestor meridionalis), keas (N. notabilis), Chatham parakeets (Cyanoramphus forbesi), Malherbe's parakeets (Cyanoramphus malherbi), yellow-crowned parakeets (C. auriceps) and red-fronted parakeets (Cyanoramphus novaezelandiae), as well as eastern rosellas (Platycercus eximius), an introduced species that is now common throughout the North Island, for BFDV. Out of all species and populations sampled (786 individuals), we found 16 BFDV-positive red-fronted parakeets from Little Barrier Island/Hauturu, seven eastern rosellas from the Auckland region, and eight yellow-crowned parakeets from the Eglinton Valley in the South Island. The full genomes of the viral isolates from the red-fronted parakeets share 95-97 % sequence identity to those from the invasive eastern rosellas and 92.7-93.4 % to those isolates from the South Island yellow-crowned parakeets. The yellow-crowned parakeet BFDV isolates share 92-94 % sequence identity with those from eastern rosellas. The low level of diversity among all BFDV isolates from red-fronted parakeets could suggest a more recent infection among these birds compared to the yellow-crowned parakeets, whereas the diversity in the eastern rosellas indicates a much more established infection. Pro-active screening and monitoring of BFDV infection rates in aviaries as well as in wild populations are necessary to limit the risk of transmission among threatened and endangered parrot populations in New Zealand.
Collapse
|
5
|
Varsani A, Regnard GL, Bragg R, Hitzeroth II, Rybicki EP. Global genetic diversity and geographical and host-species distribution of beak and feather disease virus isolates. J Gen Virol 2010; 92:752-67. [PMID: 21177924 DOI: 10.1099/vir.0.028126-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Psittacine beak and feather disease (PBFD) has a broad host range and is widespread in wild and captive psittacine populations in Asia, Africa, the Americas, Europe and Australasia. Beak and feather disease circovirus (BFDV) is the causative agent. BFDV has an ∼2 kb single stranded circular DNA genome encoding just two proteins (Rep and CP). In this study we provide support for demarcation of BFDV strains by phylogenetic analysis of 65 complete genomes from databases and 22 new BFDV sequences isolated from infected psittacines in South Africa. We propose 94% genome-wide sequence identity as a strain demarcation threshold, with isolates sharing >94% identity belonging to the same strain, and strain subtypes sharing >98% identity. Currently, BFDV diversity falls within 14 strains, with five highly divergent isolates from budgerigars probably representing a new species of circovirus with three strains (budgerigar circovirus; BCV-A, -B and -C). The geographical distribution of BFDV and BCV strains is strongly linked to the international trade in exotic birds; strains with more than one host are generally located in the same geographical area. Lastly, we examined BFDV and BCV sequences for evidence of recombination, and determined that recombination had occurred in most BFDV and BCV strains. We established that there were two globally significant recombination hotspots in the viral genome: the first is along the entire intergenic region and the second is in the C-terminal portion of the CP ORF. The implications of our results for the taxonomy and classification of circoviruses are discussed.
Collapse
Affiliation(s)
- Arvind Varsani
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | | | | | | | | |
Collapse
|
6
|
Ogawa H, Yamaguchi T, Fukushi H. Duplex shuttle PCR for differential diagnosis of budgerigar fledgling disease and psittacine beak and feather disease. Microbiol Immunol 2005; 49:227-37. [PMID: 15781996 DOI: 10.1111/j.1348-0421.2005.tb03724.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two common viral diseases in psittacine birds including budgerigar fledgling disease (BFD), generally called avian polyomavirus (APV) infection, and psittacine beak and feather disease (PBFD) have similar clinical manifestations characterized by feather disorders. A duplex shuttle PCR was developed for detection of APV and PBFD virus (PBFDV). Two pairs of oligonucleotide primers were designed to amplify a 298-bp fragment of the t/T antigen region of APV genome and a 495-bp fragment of the capsid protein region encoded by open reading frame (ORF) C1 of PBFDV genome, respectively. In the present study, APV and PBFDV were detected simultaneously in one tube by duplex shuttle PCR using these two pairs of primers. The detection limits were 2 viral copies of APV and 3 viral copies of PBFDV. In the clinical application, we detected 16 APV-positive, 15 PBFDV-positive, and 3 mixed infected samples in 39 samples examined. Sequences of the amplified products were read. The t/T antigen region was conserved in the APV-positive samples as expected. ORF C1 of PBFDV genome showed diversity. Phylogenic analysis indicated that PBFDV ORF C1 consisted of 6 clusters which were related to subfamilies of psittacine birds. Our duplex shuttle PCR could be a useful method for differential diagnosis and molecular epidemiology of BFD and PBFD.
Collapse
Affiliation(s)
- Hirohito Ogawa
- Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, Japan
| | | | | |
Collapse
|
7
|
Abstract
Porcine circovirus type 1 (PCV1) contains two major open reading frames encoding the replication initiator proteins, Rep and Rep', and the structural protein, Cap. The promoters of these two genes (P(cap) and P(rep)) have been mapped. P(cap) is located within the rep open reading frame (nt 1328-1252). P(rep) has been mapped to the intergenic region immediately upstream of the rep gene (nt 640-796) and overlaps the origin of replication of PCV1. Although binding of both rep gene products to a fragment containing P(rep) and the overlapping origin of replication has been reported, only the full-length Rep protein repressed P(rep), while the spliced isoform Rep' did not. P(rep) repression is mediated by binding of the Rep protein to the two inner hexamers, H1 and H2, located in the origin of PCV1, whereas binding of Rep to hexamers H3 and H4 was not necessary. Use of Rep mutants indicated that the conserved rolling-circle replication domain II as well as the P loop are essential for repression of P(rep). In contrast to P(rep), transcription of P(cap) was not influenced by viral proteins. Additionally, the ratio of the rep and rep' transcripts was analysed. Twelve hours after transfection of PK15 cells with an infectious clone of PCV1, similar amounts of both transcripts were detected, but later the amount of the two transcripts varied, indicating a balanced expression of the two rep transcripts.
Collapse
Affiliation(s)
- Annette Mankertz
- P24 (Xenotransplantation), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany1
| | - Bernd Hillenbrand
- P24 (Xenotransplantation), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany1
| |
Collapse
|
8
|
Kiatipattanasakul-Banlunara W, Tantileartcharoen R, Katayama KI, Suzuki K, Lekdumrogsak T, Nakayama H, Doi K. Psittacine beak and feather disease in three captive sulphur-crested cockatoos (Cacatua galerita) in Thailand. J Vet Med Sci 2002; 64:527-9. [PMID: 12130840 DOI: 10.1292/jvms.64.527] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Three sulphur-crested cockatoos (Cacatua galerita) were diagnosed as psittacine beak and feather disease (PBFD). Histopathology of the feather pulp and follicles showed intracytoplasmic botryoid clusters or granular inclusion bodies in epithelial cells and macrophages. Electron microscopy revealed multiple cytoplasmic clusters of electron dense viral particles corresponding to the inclusions. PBFD virus (circovirus) DNA-specific product was detected from formalin-fixed paraffin-embedded feathers by nested polymerase chain reaction (PCR) method.
Collapse
|
9
|
Sanada N, Sanada Y. The sensitivities of various erythrocytes in a haemagglutination assay for the detection of psittacine beak and feather disease virus. JOURNAL OF VETERINARY MEDICINE. B, INFECTIOUS DISEASES AND VETERINARY PUBLIC HEALTH 2000; 47:441-3. [PMID: 11014065 DOI: 10.1046/j.1439-0450.2000.00360.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The erythrocytes of various species were tested in psittacine beak and feather disease (PBFD) virus haemagglutination (HA) and haemagglutination inhibition assays to determine which are suitable for use in these assays. HA activity was observed for erythrocytes of the salmon-crested cockatoo, the sulphur-crested cockatoo, the umbrella cockatoo, the goffin's cockatoo and the cockatiel, with differences amongst individuals within species, but not for erythrocytes of humans, the pig, the guinea pig, the chicken, the goose, the rose-ringed parakeet or the budgerigar. Anti-PBFD virus rabbit sera inhibited the virus-induced agglutination of erythrocytes, confirming the specificity of HA activity. This suggests that selection of suitable psittacine species as well as suitable individuals within a species is necessary when obtaining erythrocytes for the PBFD virus HA assay.
Collapse
Affiliation(s)
- N Sanada
- Kyuritsu Shoji Laboratories, Ibaraki, Japan
| | | |
Collapse
|