1
|
Thomas P, Abdel-Glil MY, Subbaiyan A, Busch A, Eichhorn I, Wieler LH, Neubauer H, Pletz M, Seyboldt C. First Comparative Analysis of Clostridium septicum Genomes Provides Insights Into the Taxonomy, Species Genetic Diversity, and Virulence Related to Gas Gangrene. Front Microbiol 2021; 12:771945. [PMID: 34956133 PMCID: PMC8696124 DOI: 10.3389/fmicb.2021.771945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridium septicum is a Gram-positive, toxin-producing, and spore-forming bacterium that is recognized, together with C. perfringens, as the most important etiologic agent of progressive gas gangrene. Clostridium septicum infections are almost always fatal in humans and animals. Despite its clinical and agricultural relevance, there is currently limited knowledge of the diversity and genome structure of C. septicum. This study presents the complete genome sequence of C. septicum DSM 7534T type strain as well as the first comparative analysis of five C. septicum genomes. The taxonomy of C. septicum, as revealed by 16S rRNA analysis as well as by genomic wide indices such as protein-based phylogeny, average nucleotide identity, and digital DNA–DNA hybridization indicates a stable clade. The composition and presence of prophages, CRISPR elements and accessory genetic material was variable in the investigated genomes. This is in contrast to the limited genetic variability described for the phylogenetically and phenotypically related species Clostridium chauvoei. The restriction-modification (RM) systems between two C. septicum genomes were heterogeneous for the RM types they encoded. C. septicum has an open pangenome with 2,311 genes representing the core genes and 1,429 accessory genes. The core genome SNP divergence between genome pairs varied up to 4,886 pairwise SNPs. A vast arsenal of potential virulence genes was detected in the genomes studied. Sequence analysis of these genes revealed that sialidase, hemolysin, and collagenase genes are conserved compared to the α-toxin and hyaluronidase genes. In addition, a conserved gene found in all C. septicum genomes was predicted to encode a leucocidin homolog (beta-channel forming cytolysin) similar (71.10% protein identity) to Clostridium chauvoei toxin A (CctA), which is a potent toxin. In conclusion, our results provide first, valuable insights into strain relatedness and genomic plasticity of C. septicum and contribute to our understanding of the virulence mechanisms of this important human and animal pathogen.
Collapse
Affiliation(s)
- Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Mostafa Y. Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- Institute for Infectious Diseases and Infection Control, Jena University Hospital – Friedrich Schiller University, Jena, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Mostafa Y. Abdel-Glil,
| | - Anbazhagan Subbaiyan
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Anne Busch
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Jena, Jena, Germany
| | - Inga Eichhorn
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Lothar H. Wieler
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Robert Koch Institute, Berlin, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Mathias Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital – Friedrich Schiller University, Jena, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
2
|
Thomas P, Abdel-Glil MY, Eichhorn I, Semmler T, Werckenthin C, Baumbach C, Murmann W, Bodenthin-Drauschke A, Zimmermann P, Schotte U, Galante D, Slavic D, Wagner M, Wieler LH, Neubauer H, Seyboldt C. Genome Sequence Analysis of Clostridium chauvoei Strains of European Origin and Evaluation of Typing Options for Outbreak Investigations. Front Microbiol 2021; 12:732106. [PMID: 34659160 PMCID: PMC8513740 DOI: 10.3389/fmicb.2021.732106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
Black quarter caused by Clostridium (C.) chauvoei is an important bacterial disease that affects cattle and sheep with high mortality. A comparative genomics analysis of 64 C. chauvoei strains, most of European origin and a few of non-European and unknown origin, was performed. The pangenome analysis showed limited new gene acquisition for the species. The accessory genome involved prophages and genomic islands, with variations in gene composition observed in a few strains. This limited accessory genome may indicate that the species replicates only in the host or that an active CRISPR/Cas system provides immunity to foreign genetic elements. All strains contained a CRISPR type I-B system and it was confirmed that the unique spacer sequences therein can be used to differentiate strains. Homologous recombination events, which may have contributed to the evolution of this pathogen, were less frequent compared to other related species from the genus. Pangenome single nucleotide polymorphism (SNP) based phylogeny and clustering indicate diverse clusters related to geographical origin. Interestingly the identified SNPs were mostly non-synonymous. The study demonstrates the possibility of the existence of polymorphic populations in one host, based on strain variability observed for strains from the same animal and strains from different animals of one outbreak. The study also demonstrates that new outbreak strains are mostly related to earlier outbreak strains from the same farm/region. This indicates the last common ancestor strain from one farm can be crucial to understand the genetic changes and epidemiology occurring at farm level. Known virulence factors for the species were highly conserved among the strains. Genetic elements involved in Nicotinamide adenine dinucleotide (NAD) precursor synthesis (via nadA, nadB, and nadC metabolic pathway) which are known as potential anti-virulence loci are completely absent in C. chauvoei compared to the partial inactivation in C. septicum. A novel core-genome MLST based typing method was compared to sequence typing based on CRISPR spacers to evaluate the usefulness of the methods for outbreak investigations.
Collapse
Affiliation(s)
- Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Mostafa Y Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Inga Eichhorn
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | | | - Christiane Werckenthin
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Oldenburg, Oldenburg, Germany
| | - Christina Baumbach
- State Office for Agriculture, Food Safety and Fisheries Mecklenburg-Western Pomerania, Rostock, Germany
| | - Wybke Murmann
- Chemical and Veterinary Investigations Office, Freiburg, Germany
| | | | - Pia Zimmermann
- Bavarian Health and Food Safety Authority (LGL), Laboratory of Food Microbiology, Oberschleißheim, Germany
| | - Ulrich Schotte
- Department A-Veterinary Medicine, Central Institute of the Bundeswehr Medical Service Kiel, Kronshagen, Germany
| | - Domenico Galante
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Durda Slavic
- Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada
| | - Martin Wagner
- Unit for Food Microbiology, Institute for Food Safety, Technology and Veterinary Public Health, University for Veterinary Medicine, Vienna, Austria
| | | | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
3
|
Characterization of quorum sensing system in Clostridium chauvoei. Anaerobe 2018; 52:92-99. [PMID: 29928976 DOI: 10.1016/j.anaerobe.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022]
Abstract
Clostridium chauvoei causes fatal black quarter infection in cattle and buffaloes. The quorum sensing (QS) system, a bacterial cell to cell communication process, of the pathogen was characterized in the current study. The results indicated that C. chauvoei lacked luxS (autoinducer-2) based quorum sensing as detected by the sensor strain Vibrio harveyi BB170. This was supported by absence of luxS gene in C. chauvoei genome. However, the genomic analysis indicated the presence of agrBD system in all three genomes of C. chauvoei available at the NCBI database. The AgrD, which synthesizes QS messenger auto-inducing peptide, was a 44 amino acid protein which shared 59% identity and 75% similarity with AgrD of C. perfringens strain 13 and 56% identity (20% coverage) with Staphylococcus aureus N315. The functional cysteine amino acid was conserved in all the strains. The genomic organisation further suggests the presence of diguanylate cyclase, a gene responsible for synthesis of secondary messenger cyclic di-GMP, at 3' immediate downstream of agrD gene. The real time expression analysis for agrD gene indicated that expression was better at 37 °C (1.9-3.7 fold increase) compared to a higher temperature of 40 °C. However, stable expression was observed at different growth stages (log and early stationary phase) with 0.8-1.4 fold changes in expression pattern. The results indicate the presence of a constitutively expressed agrBD quorum sensing system in C. chauvoei.
Collapse
|
4
|
Thomas P, Semmler T, Eichhorn I, Lübke-Becker A, Werckenthin C, Abdel-Glil MY, Wieler LH, Neubauer H, Seyboldt C. First report of two complete Clostridium chauvoei genome sequences and detailed in silico genome analysis. INFECTION GENETICS AND EVOLUTION 2017; 54:287-298. [PMID: 28720440 DOI: 10.1016/j.meegid.2017.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/28/2022]
Abstract
Clostridium (C.) chauvoei is a Gram-positive, spore forming, anaerobic bacterium. It causes black leg in ruminants, a typically fatal histotoxic myonecrosis. High quality circular genome sequences were generated for the C. chauvoei type strain DSM 7528T (ATCC 10092T) and a field strain 12S0467 isolated in Germany. The origin of replication (oriC) was comparable to that of Bacillus subtilis in structure with two regions containing DnaA boxes. Similar prophages were identified in the genomes of both C. chauvoei strains which also harbored hemolysin and bacterial spore formation genes. A CRISPR type I-B system with limited variations in the repeat number was identified. Sporulation and germination process related genes were homologous to that of the Clostridia cluster I group but novel variations for regulatory genes were identified indicative for strain specific control of regulatory events. Phylogenomics showed a higher relatedness to C. septicum than to other so far sequenced genomes of species belonging to the genus Clostridium. Comparative genome analysis of three C. chauvoei circular genome sequences revealed the presence of few inversions and translocations in locally collinear blocks (LCBs). The species genome also shows a large number of genes involved in proteolysis, genes for glycosyl hydrolases and metal iron transportation genes which are presumably involved in virulence and survival in the host. Three conserved flagellar genes (fliC) were identified in each of the circular genomes. In conclusion this is the first comparative analysis of circular genomes for the species C. chauvoei, enabling insights into genome composition and virulence factor variation.
Collapse
Affiliation(s)
- Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743 Jena, Germany.
| | | | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität, Robert-von-Ostertag-Str. 7-13, Building 35, 14163, Berlin, Germany.
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität, Robert-von-Ostertag-Str. 7-13, Building 35, 14163, Berlin, Germany.
| | - Christiane Werckenthin
- LAVES, Lebensmittel- und Veterinärinstitut Oldenburg, Martin-Niemöller-Straße 2, 26133 Oldenburg, Germany.
| | - Mostafa Y Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743 Jena, Germany.
| | | | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743 Jena, Germany.
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743 Jena, Germany.
| |
Collapse
|
5
|
Abreu CC, Edwards EE, Edwards JF, Gibbons PM, Leal de Araújo J, Rech RR, Uzal FA. Blackleg in cattle: A case report of fetal infection and a literature review. J Vet Diagn Invest 2017; 29:612-621. [PMID: 28599620 DOI: 10.1177/1040638717713796] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Clostridium chauvoei causes blackleg in cattle. The disease has been reported worldwide, and although it can be prevented by vaccination, sporadic cases and occasional outbreaks still occur. We describe a case of blackleg in a 2-y-old, pregnant Gyr cow with in utero transmission to the fetus. The cow had characteristic gross and microscopic lesions of blackleg including widespread necrohemorrhagic and emphysematous skeletal and myocardial myositis, and fibrinous pericarditis. Her uterus contained a near-term, markedly emphysematous fetus with skeletal muscle and myocardial lesions similar to those seen in the dam. Histopathology of dam and fetal tissues revealed numerous gram-positive bacilli, many of them with sub-terminal spores, in multiple tissues. These bacilli were identified as C. chauvoei by immunohistochemistry. Anaerobic culture and fluorescent antibody tests performed on skeletal muscle from both the dam and fetus were positive for C. chauvoei, confirming a diagnosis of blackleg. Blackleg is a so-called endogenous infection, and the currently accepted pathogenesis involves ingestion of spores that are transported to muscle tissues where they lie dormant until anaerobiosis prompts germination. Germinating bacteria are histotoxic, producing severe, local necrosis and ultimately lethal toxemia. This model, however, has not been confirmed experimentally and also fails to explain some cases of the disease. A presumptive diagnosis of blackleg is based on clinical, gross, and histologic findings. Diagnostic confirmation necessitates the detection of C. chauvoei by culture, PCR, or immunodetection methods.
Collapse
Affiliation(s)
- Camila C Abreu
- Veterinary Pathology Laboratory, Federal University of Lavras, Lavras, Minas Gerais, Brazil (Abreu).,Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, TX (Edwards, Edwards, Gibbons, Leal de Araújo, Rech).,California Animal Health & Food Safety Laboratory, San Bernardino Branch, School of Veterinary Medicine, University of California - Davis, Davis, CA (Abreu, Uzal)
| | - Erin E Edwards
- Veterinary Pathology Laboratory, Federal University of Lavras, Lavras, Minas Gerais, Brazil (Abreu).,Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, TX (Edwards, Edwards, Gibbons, Leal de Araújo, Rech).,California Animal Health & Food Safety Laboratory, San Bernardino Branch, School of Veterinary Medicine, University of California - Davis, Davis, CA (Abreu, Uzal)
| | - John F Edwards
- Veterinary Pathology Laboratory, Federal University of Lavras, Lavras, Minas Gerais, Brazil (Abreu).,Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, TX (Edwards, Edwards, Gibbons, Leal de Araújo, Rech).,California Animal Health & Food Safety Laboratory, San Bernardino Branch, School of Veterinary Medicine, University of California - Davis, Davis, CA (Abreu, Uzal)
| | - Philippa M Gibbons
- Veterinary Pathology Laboratory, Federal University of Lavras, Lavras, Minas Gerais, Brazil (Abreu).,Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, TX (Edwards, Edwards, Gibbons, Leal de Araújo, Rech).,California Animal Health & Food Safety Laboratory, San Bernardino Branch, School of Veterinary Medicine, University of California - Davis, Davis, CA (Abreu, Uzal)
| | - Jeann Leal de Araújo
- Veterinary Pathology Laboratory, Federal University of Lavras, Lavras, Minas Gerais, Brazil (Abreu).,Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, TX (Edwards, Edwards, Gibbons, Leal de Araújo, Rech).,California Animal Health & Food Safety Laboratory, San Bernardino Branch, School of Veterinary Medicine, University of California - Davis, Davis, CA (Abreu, Uzal)
| | - Raquel R Rech
- Veterinary Pathology Laboratory, Federal University of Lavras, Lavras, Minas Gerais, Brazil (Abreu).,Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, TX (Edwards, Edwards, Gibbons, Leal de Araújo, Rech).,California Animal Health & Food Safety Laboratory, San Bernardino Branch, School of Veterinary Medicine, University of California - Davis, Davis, CA (Abreu, Uzal)
| | - Francisco A Uzal
- Veterinary Pathology Laboratory, Federal University of Lavras, Lavras, Minas Gerais, Brazil (Abreu).,Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, TX (Edwards, Edwards, Gibbons, Leal de Araújo, Rech).,California Animal Health & Food Safety Laboratory, San Bernardino Branch, School of Veterinary Medicine, University of California - Davis, Davis, CA (Abreu, Uzal)
| |
Collapse
|
6
|
Seise B, Pollok S, Seyboldt C, Weber K. Dry-reagent-based PCR as a novel tool for the rapid detection of Clostridium spp. J Med Microbiol 2013; 62:1588-1591. [DOI: 10.1099/jmm.0.060061-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Improved conventional PCR techniques are required for the rapid on-site detection of human and animal diseases. In this context, a PCR method using dry-stored reagents intended for the detection of Clostridium spp. is presented. Basic PCR reagents (BSA, PCR buffer, MgCl2 and primers), which were dried on polyolefin matrices, showed stability at ambient temperatures for up to 10 months without any loss of functionality. An outstanding advantage of our amelioration is the elimination of PCR process errors caused by the improper storage and handling of liquid reagents. Moreover, our PCR-based amplification can be performed in less than 30 min, saving time compared with conventional detection methods. Thus, dry-reagent-based PCR is implementable in a suitcase-like modular device for the rapid on-site detection of microbial pathogens such as blackleg of ruminants caused by Clostridium chauvoei.
Collapse
Affiliation(s)
- Barbara Seise
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Sibyll Pollok
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health (Friedrich-Loeffler-Institut), Naumburger Strasse 96a, 07743 Jena, Germany
| | - Karina Weber
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
7
|
Groseth PK, Ersdal C, Bjelland AM, Stokstad M. Large outbreak of blackleg in housed cattle. Vet Rec 2011; 169:339. [DOI: 10.1136/vr.d4628] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- P. K. Groseth
- Department of Production Animal Clinical Sciences; Norwegian School of Veterinary Science; PB 8146 Dep, 0033 Oslo Norway
| | - C. Ersdal
- Department of Basic Sciences and Aquatic Medicine; Norwegian School of Veterinary Science; PB 8146 Dep, 0033 Oslo Norway
| | - A. M. Bjelland
- Department of Food Safety and Infection Biology; Norwegian School of Veterinary Science; PB 8146 Dep, 0033 Oslo Norway
| | - M. Stokstad
- Department of Production Animal Clinical Sciences; Norwegian School of Veterinary Science; PB 8146 Dep, 0033 Oslo Norway
| |
Collapse
|
8
|
Garofolo G, Galante D, Serrecchia L, Buonavoglia D, Fasanella A. Development of a real time PCR Taqman assay based on the TPI gene for simultaneous identification of Clostridium chauvoei and Clostridium septicum. J Microbiol Methods 2010; 84:307-11. [PMID: 21182874 DOI: 10.1016/j.mimet.2010.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/30/2010] [Accepted: 12/14/2010] [Indexed: 01/24/2023]
Abstract
In the present study, a Taqman allelic discrimination assay based on three SNPs of the TPI gene is described. It was used as a differential diagnostic tool to detect blackleg and malignant edema. Sudden deaths of grazing ruminants, such as cattle, sheep and goats, which show clinical signs related to hyperacute infective processes, encouraged the development of a rapid and precise diagnostic molecular method. Specific primers and probes for Clostridium septicum and Clostridium chauvoei were designed on the basis of the TPI gene sequence. The multiplex PCR was tested on the DNA of a total of 57 strains, including 24 Clostridium chauvoei, 20 Clostridium septicum, 1 Bacillus anthracis and 12 other Clostridium spp. The DNA samples from Clostridium chauvoei and Clostridium septicum strains were amplified. Amplification of other DNA samples was not observed, with the exception of Clostridium tertium, which showed a weak positive signal. To avoid misdiagnosis, a confirmatory assay based on a Sybr green real time PCR was proposed. The authors confirmed the efficacy and the specificity of the test used in this study, which proved to be a useful tool for the diagnosis of clostridiosis that are often diagnosed using only traditional tools.
Collapse
Affiliation(s)
- G Garofolo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy.
| | | | | | | | | |
Collapse
|
9
|
Lange M, Neubauer H, Seyboldt C. Development and validation of a multiplex real-time PCR for detection of Clostridium chauvoei and Clostridium septicum. Mol Cell Probes 2010; 24:204-10. [PMID: 20362050 DOI: 10.1016/j.mcp.2010.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/23/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
Clostridium chauvoei is the causative agent of blackleg in cattle and sheep. The clinical symptoms of this severe disease are very similar to that of malignant edema (Clostridium septicum), infections of other Clostridium species belonging to the gas edema complex, and anthrax (Bacillus anthracis). C. chauvoei and C. septicum are closely related taxa and share many phenotypic properties hampering diagnosis by using traditional microbiological methods. Thus, there is a need for a fast and reliable identification method for specific detection of both species in clinical samples. The multiplex real-time PCR assay presented here is based on the detection of the spo0A gene and enables the simultaneous identification of C. chauvoei and C. septicum. The assay design includes an amplification control DNA template for the recognition of PCR-inhibitors. Assay validation was performed using a collection of 29 C. chauvoei, 38 C. septicum strains and 26 strains of other Clostridium species. Furthermore, the real-time PCR assay was successfully tested on tissue samples from 19 clinical blackleg cases. The assay allowed the reliable detection of one picogram DNA which represents approximate 239 genome equivalents.
Collapse
Affiliation(s)
- Martin Lange
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health (Friedrich-Loeffler-Institute), 07743 Jena, Germany.
| | | | | |
Collapse
|
10
|
Novel real-time PCR assay for simultaneous detection and differentiation of Clostridium chauvoei and Clostridium septicum in clostridial myonecrosis. J Clin Microbiol 2010; 48:1093-8. [PMID: 20129968 DOI: 10.1128/jcm.01975-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A real-time PCR assay based on the 16S rRNA gene sequence was designed for differentiation of blackleg-causing Clostridium chauvoei and Clostridium septicum, a phylogenetically closely related bacterium responsible for malignant edema. In order to exclude false-negative results, an internal amplification control was included in the assay. A set of three probes, one specific for C. chauvoei, one specific for C. septicum, and one specific for both species, permitted unequivocal detection of C. chauvoei in tests of 32 Clostridium sp. strains and 10 non-Clostridium strains. The assay proved to be sensitive, detecting one genome of C. chauvoei or C. septicum per PCR and 1.79 x 10(3) C. chauvoei cells/g artificially contaminated muscle tissue. In tests of 11 clinical specimens, the real-time PCR assay yielded the same results as an established conventional PCR method.
Collapse
|
11
|
Bagge E, Lewerin SS, Johansson KE. Detection and identification by PCR of Clostridium chauvoei in clinical isolates, bovine faeces and substrates from biogas plant. Acta Vet Scand 2009; 51:8. [PMID: 19257884 PMCID: PMC2653026 DOI: 10.1186/1751-0147-51-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/03/2009] [Indexed: 11/23/2022] Open
Abstract
Background Clostridium chauvoei causes blackleg, an acute disease associated with high mortality in ruminants. The apparent primary port of entry is oral, during grazing on pasture contaminated by spores. Cases of blackleg can occur year after year on contaminated pastures. A method to determine the prevalence of C. chauvoei spores on pasture would be useful. The standard method for C. chauvoei detection is culture and biochemical identification, which requires a pure culture. In most muscle samples from cattle dead from blackleg the amount of C. chauvoei in samples is high and the bacterium can easily be cultured, although some samples may be contaminated. Detection by PCR would be faster and independent of contaminating flora. Digested residues from biogas plants provide an excellent fertiliser, but it is known that spore-forming baeria such as Clostridium spp. are not reduced by pasteurisation. The use of digested residues as fertiliser may contribute to the spread of C. chauvoei. Soil, manure and substrate from biogas plants are contaminated with other anaerobic bacteria which outgrow C. chauvoei. Therefore, detection by PCR is would be useful. This study applied a PCR-based method to detect of C. chauvoei in 25 muscle and blood samples, 114 manure samples, 84 soil samples and 33 samples from the biogas process. Methods Muscle tissues from suspected cases of blackleg were analysed both by the standard culture method followed by biochemical identification and by PCR, with and without preculture. To investigate whether muscle tissue samples are necessary, samples taken by swabs were also investigated. Samples from a biogas plant and manure and soil from farms were analysed by culture followed by PCR. The farms had proven cases of blackleg. For detection of C. chauvoei in the samples, a specific PCR primer pair complementary to the spacer region of the 16S-23S rRNA gene was used. Results Clostridium chauvoei was detected in 32% of muscle samples analysed by culture with identification by biochemical methods and in 56% of cases by culture in combination with PCR. Clostridium chauvoei was detected in 3 (out of 11) samples from the biogas plants collected before pasteurisation, but samples taken after pasteurisation and after digestion all tested negative. Clostridium chauvoei was not detected in any soil or silage samples and only one manure samples tested positive. Conclusion The diagnostic method used for C. chauvoei was not applicable in estimating the risk of blackleg on particular pastures from manure or soil samples, but found to be highly useful for clinical samples.
Collapse
|
12
|
Abstract
The first human case of fulminant gas gangrene caused by Clostridium chauvoei, a pathogen causing ruminant blackleg, was confirmed for a 58-year-old man suffering from diabetes mellitus. The patient developed conspicuous emphysematous gangrene in the right chest wall as well as intravascular gas entrapments and died 2 h after hospital arrival.
Collapse
|
13
|
Sadeghifard N, Gürtler V, Beer M, Seviour RJ. The mosaic nature of intergenic 16S-23S rRNA spacer regions suggests rRNA operon copy number variation in Clostridium difficile strains. Appl Environ Microbiol 2006; 72:7311-23. [PMID: 16980415 PMCID: PMC1636144 DOI: 10.1128/aem.01179-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 09/07/2006] [Indexed: 11/20/2022] Open
Abstract
Clostridium difficile is a major spore-forming environmental pathogen that causes serious health problems in patients undergoing antibiotic therapy. Consequently, reliable and sensitive methods for typing individual strains are required for epidemiological and environmental studies. Ribotyping is generally considered the best method, but it fails to account for sequence diversity which might exist in intergenic 16S-23S rRNA spacer regions (ISRs) within and among strains of this organism. Therefore, this study was undertaken to compare the sequence of each individual ISR in five strains of C. difficile to explore the extent of this diversity and see whether such information might provide the basis for more sensitive and discriminatory strain typing methods. After targeted PCR amplification, cloning, and sequencing, the diversity of the ISRs was used as a measure of rRNA operon copy number. In C. difficile strains 630, ATCC 43593, A, and B, 11, 11, 7, and 8 ISR length variants, respectively, were found (containing different combinations of sequence groups [i to xiii]), suggesting 11, 11, 7, and 8 rrn copies in the respective strains. Many ISRs of the same length differed markedly in their sequences, and some of these were restricted in occurrence to a single strain. Most of these ISRs did not contain any tRNA genes, and only single copies of the tRNA(Ala) gene were found in those that did. The presence of ISR sequence groups (i to xiii) varied between strains, with some found in one, two, three, four, or all five strains. We conclude that the intergenic 16S-23S rRNA spacer regions showed a high degree of diversity, not only among the rrn operons in different strains and different rrn copies in a single strain but also among ISRs of the same length. It appears that C. difficile ISRs vary more at the inter- and intragenic levels than those of other species as determined by empirical comparison of sequences. The precise characterization of these sequences has demonstrated a high level of mosaic sequence block rearrangements that are present or absent in multiple strain-variable rrn copies within and between five different strains of C. difficile.
Collapse
Affiliation(s)
- Nourkhoda Sadeghifard
- Biotechnology Research Centre, La Trobe University, Bendigo, Victoria 3552, Australia
| | | | | | | |
Collapse
|
14
|
Sasaki Y, Yamamoto K, Amimoto K, Kojima A, Ogikubo Y, Norimatsu M, Ogata H, Tamura Y. Amplification of the 16S-23S rDNA spacer region for rapid detection of Clostridium chauvoei and Clostridium septicum. Res Vet Sci 2001; 71:227-9. [PMID: 11798300 DOI: 10.1053/rvsc.2001.0495] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Amplification of the 16S-23S rDNA spacer region by polymerase chain reaction (PCR) was used for the rapid detection of Clostridium chauvoei and C septicum. To assess its specificity, PCR was performed with total DNA from 42 strains of clostridia and three strains of other genera. PCR products specific to C chauvoei or to C septicum were generated from homologous cultures only. Clostridium chauvoer-specific or C septicum-specific amplicons were also generated from tissues of cows experimentally infected with C chauvoei or C septicum and in DNA samples from cows clinically diagnosed as having blackleg or malignant oedema. These results suggest that a species-specific PCR may be useful for the rapid and direct detection of C chauvoei and C septicum in clinical specimens.
Collapse
Affiliation(s)
- Y Sasaki
- National Veterinary Assay Laboratory, 1-15-1, Tokura, Kokubunji, Tokyo 185-8511, Japan.
| | | | | | | | | | | | | | | |
Collapse
|